Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of the Ramanujan Mathematical Society

Volume 36, Issue 4, December 2021  pp. 267–273.

Center of Cartesian and strong product of digraphs

Authors:  Prasanth G. Narasimha-Shenoi and Mary Shalet Thottungal Joseph
Author institution:Department of Mathematics, Government College Chittur, Palakkad, Kerala 678 104, India

Summary:  Let D=(V,E) be a digraph and u, v ∈ V(D). The metric maximum distance is defined by md(u,v) = max {{d}(u,v), {d}(v,u)} where {d}(u,v) denote the length of a shortest directed u-v path in D. The eccentricity of a vertex v in D is defined by ecc(v) = max {md(v,u): u ∈ V(D)}. The center C(D) of a strongly connected digraph consist of all the vertices with minimum eccentricity. The relationship between the center of the Cartesian and strong product of two or more digraphs and its factor graphs have been studied in this article.

Contents   Full-Text PDF