Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of the Ramanujan Mathematical Society

Volume 39, Issue 4, December 2024  pp. 389–408.

GIT quotient of Schubert varieties modulo one dimensional torus

Authors:  Arkadev Ghosh and S. S. Kannan
Author institution:Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Siruseri, Kelambakkam, 603 103, India.

Summary:  Let G be a simple algebraic group of adjoint type of rank n over ℂ. Let T be a maximal torus of G, and B be a Borel subgroup of G containing T. Let W = N{G}(T)/T be the Weyl group of G. Let S = {α{1}, … , α{n}} be the set of simple roots of G relative to (B, T). Let λ{s} be the one parameter subgroup of T dual to α{s}. In this paper, we give a criterion for Schubert varieties admitting semistable points for the λ{s}-linearized line bundles L(χ) associated to every dominant character χ of T. If ω{r} is a minuscule fundamental weight and mωr ∈ X(T), then we prove that there is a unique minimal dimensional Schubert variety X(ws,r) in G/P{S\{αr}} such that X(w{s,r}){ss} {λs} (L(mωr)) ≠ ϕ. Further, we prove that if G = PS L(n,ℂ), and n ł rs, m = {n}/{(rs,n)}, and p = ⌊rs/n⌋ then λs\\X(ws,r)ss λs (L(mω{r})) ≃ (ℙ(M(s − p, r − p)),𝕆(a)) for some a ∈ ℕ.


Contents   Full-Text PDF