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Abstract. The Grothendieck–Teichmüller Lie algebra is a Lie subal-
gebra of a Lie algebra of derivations of the free Lie algebra in two gen-
erators. We show that the lower central series of the latter Lie algebra
induces a decreasing filtration of the Grothendieck–Teichmüller Lie alge-
bra, and we study the corresponding graded Lie algebra. Its degree zero
part has been previously computed by the second author. We show that
the degree one part is a module over a symmetric algebra such that both
module and algebra are equipped with compatible decreasing filtrations.
We exhibit an explicit lower bound for the associated graded module.
We derive from that some information on the explicit expression of the
depth 3 component of the associated graded Lie algebra (with respect
to the depth filtration).

2010 Math. Subj. Class. Primary: 17B01; Secondary: 12Y05.

Key words and phrases. Grothendieck–Teichmüller Lie algebra, free Lie al-
gebra, depth filtration, lower central series filtration, gamma-functions of as-
sociators, computational commutative algebra.

1. Introduction

In this article, we study the graded Lie algebra of the Grothendieck–Teichmüller
group, denoted grt1. This Lie algebra was introduced in [Dr] in connection with
the theory of associators, and in [Ih1], [Ih2] under the name of “stable derivation
algebra” as a Lie algebra of compatible collections of derivations of Lie algebras of
infinitesimal braids in genus 0. One source of interest in grt1 is its link with the
theory of motives and multizeta values [A].

It was shown in [Br1] that grt1 contains a free Lie algebra with one generator
in each odd degree > 3. On the other hand, grt1 is equipped with a decreasing
filtration, the depth filtration, compatible with its grading (which will henceforth
be called the weight grading) and is the subject of conjectures [BK], [Br2]. For each
integer d > 1, these conjectures predict the Hilbert series of the depth d component
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of the associated graded Lie algebra (with respect to the depth filtration). These
were established in [G] for d = 2, 3.

In this paper, we introduce another decreasing filtration of grt1, also compatible
with the weight grading, which we call the l.c.s. filtration. This filtration is con-
structed as follows. The Lie algebra grt1 is a Lie subalgebra of a Lie algebra L, which
is equipped with a decreasing filtration L = L0 ⊃ L1 ⊃ · · · arising from a lower
central series. The associated graded Lie algebra L = L0⊕L1⊕· · · is then equipped
with a graded bracket such that L0 is abelian (here Li = Li/Li+1). The decreasing
filtration of L induces a decreasing filtration on grt1. The associated graded Lie
algebra is grlcs(grt1) :=

⊕

i gr
i
lcs(grt1), where gr

i
lcs(grt1) := (grt1∩L

i)/(grt1∩L
i+1).

The depth filtration of grt1 also arises from a decreasing filtration of L, and it
induces a decreasing filtration on each grilcs(grt1).

The space gr0lcs(grt1) →֒ L0 has been explicitly computed in [En1]. In what
follows, we set

Σ := gr0lcs(grt1).

The Lie bracket defines a S(Σ)-module structure on each grilcs(grt1). Let us define
the Σ-degree on S(Σ) by the condition that Σ has degree 1; this degree is compatible
with the weight degree. Let us define a Σ-structure as the following data:

• a vector spaceM, bigraded for (Σ-degree, weight degree) and equipped with
a decreasing depth filtration compatible with the bigrading; the decomposi-
tion for the Σ-degree starts in degree 2 and is denoted M = M0⊕M1⊕· · · ,
where Mi has degree i+ 2;
• a S(Σ)-module structure on M and a linear map Λ2(Σ) → M0, σ ∧ σ

′ 7→
{σ, σ′}

such that σ·{σ′, σ′′}+cycl. perm. = 0, and such that the action map S(Σ)⊗M→M

and the linear map Λ2(Σ) → M0 are compatible with all degrees and filtrations,
except for the l.c.s. filtration, for which the map has degree 1.

We associate to the space gr1lcs(grt1) a Σ-structure [gr1lcs(grt1)], whose underlying
S(Σ)-module is the graded module associated to the S(Σ)-module gr1lcs(grt1), so
Mi := Si(Σ) · gr1lcs(grt1)/S

i+1(Σ) · gr1lcs(grt1) for any i > 0.
Our main result is the computation of an explicit lower bound Mmin(Σ) for the

Σ-structure [gr1lcs(grt1)] (see Section 8.5 and Theorem 8.4). We derive from there
a lower bound for the Hilbert series of gr1lcs(grt1), as well as for the double Hilbert
series of grdpthgr

1
lcs(grt1) (Theorem 9.1).

In Table 1 we list the filtrations/degrees discussed above. The entry (object X ,
filtration F) contains the mention “graded” if the filtration F on X actually comes
from a grading, together with the list of degrees i for which griF(X) is nontrivial; the
filtrations are always compatible with the gradings, and when an object is equipped
with several gradings, they are always compatible.

The plan of the paper is as follows. In Section 2, we describe the Lie algebra L,
its l.c.s. filtration, the associated graded Lie algebra L, and their depth filtrations.
In Section 3, we describe a quotient Lquot of L, equipped with the structure of an
extension of abelian Lie algebras. In Section 4, we discuss the structures associated
with Lie subalgebras of extensions of abelian Lie algebras. We apply this discussion
in Section 5, where we construct the Σ-structure [gr1lcs(grt1)] and derive a lower
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Table 1.

depth filtration lcs filtration weight degree Σ-degree

L graded/1,2,3,... 0,1,2,3,... 2,3,4,5,... undefined

L graded/1,2,3,... graded/0,1,2,3,... 2,3,4,5,... undefined

grt1 1,2,3,... 0,1,2,3,... 3,5,7,8,9,10,... undefined

Σ = gr0lcs(grt1) 1 graded/0 3,5,7,9,11,... 1

gr1lcs(grt1) 2,3,4,5,6,... graded/1 8,10,11,12,13,... undefined

Mmin
0 (Σ) 2,3,4,5,6,... graded/1 8,10,12,14,16,... 2

Mmin
1 (Σ) 2,3,4,5,6,... graded/1 11,13,15,17,... 3

Mmin
i (Σ) 2,3,4,5,6,... graded/1 3i+ 8, 3i+ 10, . . . i+ 2

bound for it, which we express in terms of certain commutative rings. In Section 6,
we gather some results on these commutative rings. In Section 7, we compute the
lowest degree part Mmin

0 (Σ) of the lower bound and in Section 8, we compute the
rest of it. As a corollary, we derive lower bounds for generating series in Section 9.
In Section 10, we express the depth 3 part of the associated graded Lie algebra to
grt1 (with respect to the depth filtration).

2. The Lie Algebra L and its L.C.S. Filtration

In this section, we describe the Lie algebra L, its l.c.s. filtration, the associated
graded Lie algebra L and the depth filtration on these Lie algebras.

2.1. The Lie algebra L

2.1.1. The vector space L. If X is a vector space over C, we denote by L(X) the free
Lie algebra generated by X , and if k > 1, we denote by Lk(X) the component of
L(X) of degree k (where X has degree 1). We therefore have L1(X) = X, L2(X) =
Λ2(X), and so on.

We define V0 as the vector space over C freely generated by a pair of letters x, y.
We set L̃ := L(V0); L̃ is then the free Lie algebra generated by x, y. Its Lie bracket
is denoted [ , ]. It is N-graded by the convention that x, y have degree 1. We set

L := [L̃, L̃]; we have L̃ = V0⊕L. The Lie algebra L can be identified with the part

of L̃ of degree > 2.

2.1.2. The Lie bracket on L. For f, g in L̃ we set

〈f, g〉 := [f, g] +Df (g)−Dg(f),

where Df is the derivation of (L̃, [ , ]) such that Df (x) = 0, Df (y) = [y, f ]. Then

(L̃, 〈 , 〉) is a Lie algebra, and the map L̃ → Der(L̃, [ , ]) sending f 7→ Df is a
Lie algebra homomorphism (where the left side is equipped with the bracket 〈 , 〉).

One checks that L is a Lie subalgebra of L̃ for the bracket 〈 , 〉. Moreover, V0 is

contained in the center of the Lie algebra L̃, so the isomorphism L̃ ≃ V0⊕L provides
an isomorphism between L̃ and the direct sum of L and an abelian Lie algebra of
dimension 2.
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2.2. The l.c.s. filtration on L

2.2.1. Definition of a descending filtration on the vector space L. By the Lazard
elimination theorem, the Lie algebra (L, [ , ]) is freely generated by the elements
(adx)i(ad y)j([x, y]) with i, j > 0. We then set L0 := L, and Li+1 := [L, Li] for
i > 0.

So we have

[Li, Lj ] ⊂ Li+j+1; (2.1)

equivalently, L = L0 ⊃ L1 ⊃ · · · is, up to shifting the degree by 1, a descending
filtration on the Lie algebra (L, [ , ]). We define the Lie algebra (L, [ , ]) by L :=
⊕

i>0 Li, where Li := Li/Li+1; the bracket is the sum of the maps Li⊗Lj → Li+j+1

induced by the bracket [ , ] on L, so L[1] can be identified with the associated
graded of (L[1], [ , ]). We therefore have Lie algebra isomorphisms L[1] ≃ L[1] ≃
L(ABC[A, B]) (where [1] means shifting the filtration or degree by 1), where the
first isomorphism is a non-canonical isomorphism of filtered Lie algebras, and the
second is an isomorphism of graded Lie algebras, canonically defined by

L0 ∋ (class of (adx)i(ad y)j([x, y])) 7→ Ai+1Bj+1 ∈ L1(ABC[A, B]).

2.2.2. Lie algebraic properties of the filtration on L.

Proposition 2.1. (1) If i, j > 0, we have 〈Li, Lj〉 ⊂ Li+j . (2) 〈L0, L0〉 ⊂ L1.

Proof. First we prove (1). We have already seen that [Li, Lj ] ⊂ Li+j+1. If f is in
Li, then Df sends x to 0 and y to [y, f ] which is an element of Li. We therefore

have Df (L̃) ⊂ Li, thus Df (L) ⊂ Li. We conclude that DLi(L) ⊂ Li.
Thus,

DLi(L
j) = DLi([L, [. . . [L, L]]]

︸ ︷︷ ︸

j+1 terms

) ⊂ [L, [. . . [L, DLi(L)]]]
︸ ︷︷ ︸

j+1 terms

⊂ [L, [. . . [L, Li]]]
︸ ︷︷ ︸

j+1 terms

⊂ Li+j ,

therefore

DLi(L
j) ⊂ Li+j . (2.2)

Equations (2.1) and (2.2) then imply 〈Li, Lj〉 ⊂ Li+j .
We now prove (2). By (2.2), the map L⊗2 → L given by f ⊗ g 7→ Df (g) factors

into a map (L0/L1)⊗2 → L0/L1, which we will denote by α⊗ β → Ψ(α⊗ β).
We calculate the map (ABC[A, B])⊗2 → ABC[A, B] induced by Ψ and the

isomorphism L0/L1 ≃ ABC[A, B]. We have

D(ad x)i(ad y)j([x,y])((adx)
i′ (ad y)j

′

([x, y]))

=

j′−1
∑

α=0

(adx)i
′

(ad y)α([(ad y)(adx)i(ad y)j([x, y]), (ad y)j
′−1−α([x, y])])

+ (adx)i
′

(ad y)j
′

(adx)(ad y)(adx)(ad y)(adx)i(ad y)j([x, y]).

Each term of the first sum belongs to [L, L] = L1. The image of the last term under

the isomorphism L/L1 ≃ ABC[A, B] is Ai+i′+2Bj+j′+2 = Ai+1Bj+1 · Ai′+1Bj′+1.
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The map (ABC[A, B])⊗2 → ABC[A, B] obtained from Ψ by the isomorphism
L0/L1 ≃ ABC[A, B] is therefore the product of polynomials. It follows that the
map Ψ satisfies Ψ(β ⊗ α) = Ψ(α⊗ β).

We thus deduce that for f, g in L, one has Df (g) −Dg(f) ∈ L1, which implies

that 〈L, L〉 ⊂ L1. �

2.3. Calculation of the graded Lie algebra (grlcs(L), 〈 , 〉). By Proposition
2.1 we deduce that the bracket 〈 , 〉 on L induces a graded Lie bracket on L =
⊕

i>0 Li, where L = grlcs(L), Li = grilcs(L); its components will also be denoted

〈 , 〉 : Li ⊗ Lj → Li+j .

Proposition 2.2. (1) Let V = ABC[A, B]. For P = p1 ⊗ · · · ⊗ pi ∈ V
⊗i and

q ∈ V, set P ⊛q := (q(1) ·p1)⊗· · ·⊗ (q(i) ·pi), where for q(A, B) ∈ C[A, B], we have
q(1)⊗· · ·⊗q(i) = q(A1+. . .+Ai, B1+. . .+Bi) ∈ C[A1, B1, . . . , Ai, Bi] ≃ C[A, B]⊗i

and the operation · corresponds to the structure of V as a C[A, B]-module. Then,
for Q = q1 ⊗ · · · ⊗ qj ∈ V

⊗j , we set

P ⊛Q =

j
∑

α=1

q1 ⊗ · · · ⊗ qα−1 ⊗ (P ⊛ qα)⊗ qα+1 ⊗ · · · ⊗ qj ∈ V
⊗i+j−1

and we set 〈P, Q〉 = P ⊛ Q − Q ⊛ P . This bracket extends linearly to a map
T (V)⊗2 → T (V) equipping T (V) with the structure of a Lie algebra. The subspace
L(V) ⊂ T (V) is a Lie subalgebra of T (V).

(2) The Lie algebras (L, 〈 , 〉) and (L(V), 〈 , 〉) are isomorphic.

Proof. (1) The fact that T (V) is a Lie algebra (equipped with the structure de-
scribed above) is shown in [En2, Prop. 4.1].

We now show that L(V) is a Lie subalgebra of T (V). Let P ∈ Li(V) and q ∈ V .
Then P is a linear combination of expressions of the form [p1, [. . . , [pi−1, pi]]],
where the pα belong to V . Hence P ⊛ q is a linear combination of expressions of
the form [q(1) · p1, [. . . , [q

(i−1) · pi−1, q
(i) · pi]]] and so P ⊛ q ∈ Li(V).

Now suppose P ∈ Li(V) and Q ∈ Lj(V); so, Q is a linear combination of
expressions of the form [q1, [. . . [qj−1, qj ]]], where the qβ belong to V . Then P ⊛Q
is a linear combination of expressions of the form P ⊛ [q1, [. . . [qj−1, qj ]]], each of

which can be expressed as
∑j

α=1[q1, [. . . [P ⊛ qα, [. . . [qj−1, qj ]]], from which we
deduce that P ⊛Q ∈ Li+j−1(V). Therefore 〈P, Q〉 ∈ Li+j−1(V), which shows that
L(V) is a Lie subalgebra of T (V).

(2) It follows from the proof of Proposition 2.1 that

[Li, Lj ] ⊂ Li+j+1, DLi(L
j) ⊂ Li+j .

From this, we deduce that the bracket 〈 , 〉 on L is given by

〈f, g〉 = f ⋆ g − g ⋆ f,
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where f⊗g → f ⋆g is the map Li⊗Lj → Li+j induced by Li⊗Lj → Li+j , f⊗g →
Df (g). It remains to show that the following diagram commutes:

L⊗ L //

⋆

��

T (V)⊗ T (V)

⊛

��
L // T (V)

(2.3)

where the map L → T (V) is the direct sum over i > 0 of the injections Li ≃
Li(V) ⊂ V

⊗i.
For all f in Li, the map g 7→ f ⋆ g is a derivation with respect to the Lie

algebra structure of (L, [ , ]). Moreover, for each P in T (V), the map Q 7→ P ⊛Q
is a derivation with respect to the associative algebra structure of T (V). As the
map L → T (V) is a Lie algebra homomorphism, it then suffices to show that the
following diagram commutes

L⊗ L1 //

⋆

��

T (V)⊗ V

⊛

��
L // T (V).

(2.4)

If f ∈ Li = Li/Li+1 is represented by [f1, . . . , [fi, fi+1]], where each fα is in
L, and if g ∈ L1 ≃ V is the class of (adx)k(ad y)l([x, y]) (which corresponds to
g = Ak+1Bl+1 ∈ V) then we compute

Df (g) =

l−1∑

α=0

(adx)k(ad y)α
([
[y, [f1, . . . , [fi, fi+1]]], (ad y)

l−1−α([x, y])
])

+ (adx)k(ad y)l(adx)(ad y)([f1, . . . , [fi−1, fi]]).

Each term of the first sum belongs to Li+1, and thus is sent to 0 in Li = Li/Li+1.

The remaining term belongs to the class [g(1) · f1, . . . , [g
(i−1) · fi−1, g

(i) · fi]] in
Li = Li/Li+1. Therefore,

f ⋆ g = [g(1) · f1, . . . , [g
(i−1) · fi−1, g

(i) · fi]] (2.5)

The image P of f in T (V) is f1⊗· · ·⊗fi−f1⊗· · ·⊗fi⊗fi−1+. . .+(−1)i−1fi⊗· · ·⊗f1.
So,

P ⊛g = (g(1) ·f1)⊗· · ·⊗ (g(i) ·fi)− (g(1) ·f1)⊗· · ·⊗ (g(i−1) ·fi)⊗ (g(i) ·fi−1)+ . . .

+ (−1)i−1(g(1) · fi)⊗ · · · ⊗ (g(i) · f1),

which is the image of the right hand side of (2.5) under the map Li → V
⊗i. This

shows that diagram (2.4) commutes, and therefore so does diagram (2.3). �

2.4. Depth filtration on L and L. The Lie brackets 〈 , 〉 and [ , ] on L and L are
bigraded for the degrees in x and y. For i > 0, set F i

dpth(L) :=
⊕

j|j>i{part of L of

y-degree j}. Then there is a decreasing filtration L = F 1
dpth(L) ⊃ F 2

dpth(L) ⊃ · · · ,

which is compatible with the brackets 〈 , 〉, [ , ] and with the weight degree.
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For i > 0, set

F i
dpth(L) := im(F i

dpth(L)→ L), F i
dpth(L

j) := im(F i
dpth(L) ∩ Lj → Lj).

Then L = F 1
dpth(L) ⊃ F 2

dpth(L) ⊃ · · · is a decreasing filtration of L, compatible

with the Lie bracket 〈 , 〉, with the weight degree and with the l.c.s. degree.

3. The Lie Algebra Lquot

The filtered Lie algebra L = L0 ⊃ L1 ⊃ · · · gives rise to a Lie algebra Lquot :=

L/L2, which naturally fits in an exact sequence of abelian Lie algebras. After
reviewing the invariants attached to this situation (Section 3.1), we introduce Lquot

(Section 3.2) and determine its invariants (Sections 3.3 and 3.4).

3.1. Extensions of abelian Lie algebras. Let g be a Lie algebra fitting in an
exact sequence of abelian Lie algebras 0 → g1 → g → g0 → 0. The data of g and
this exact sequence give rise to:

(1) a module structure for g1 over the abelian Lie algebra g0, and therefore
over the symmetric algebra S(g0).

(2) a cocycle c ∈ H2(g0, g1) (where H
2 denotes Lie algebra cohomology).

Let us recall how this data is obtained: we fix a section σ : g0 → g of the linear map
g→ g0. The action of x0 ∈ g0 on x1 ∈ g1 is given by x0 ·x1 := [σ(x0), x0]. As g0 is
abelian, this action equips g1 with the structure of an S(g0)-module; furthermore,
this structure is independent of the choice of σ. On the other hand, the formula
c̃(x0, x

′
0) := [σ(x0), σ(x

′
0)] defines a 2-cocycle for the Lie algebra with values in g1,

whose cohomology class does not depend on the choice of σ.

3.2. Definition and structure of Lquot. According to Proposition 2.1, the sub-

space L2 is an ideal of the Lie algebra (L, 〈 , 〉). This gives rise to a quotient Lie
algebra Lquot := L/L2, whose bracket will again be denoted 〈 , 〉. Proposition 2.1

also implies that L1 is an ideal of L. The quotient space L1 = L1/L2 is therefore
an ideal of Lquot, which is abelian as 〈L1, L1〉 ⊂ L2. The quotient Lie algebra is

L0 = L/L1, which is also abelian as 〈L, L〉 ⊂ L1. The Lie algebra Lquot therefore
fits in an extension 0→ L1 → Lquot → L0 → 0 of abelian Lie algebras.

In what follows, we will set

V := L0, M := L1, (3.1)

so that Lquot fits in an exact sequence of abelian Lie algebras

0→M → Lquot → V → 0. (3.2)

3.3. Module structure associated to Lquot. Set

C[A, B, A′, B′]as := {polynomials in C[A, B, A′, B′],

antisymmetric under the exchange (A, B)↔ (A′, B′)},

C[A, B, A′, B′]sym := {polynomials in C[A, B, A′, B′],

symmetric under the exchange (A, B)↔ (A′, B′)}.
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There exist isomorphisms

V ≃ L1(ABC[A, B]) = ABC[A, B],

M ≃ L2(ABC[A, B]) = ABA′B′C[A, B, A′, B′]as.
(3.3)

There is a linear map

ABC[A, B]→ C[A, B, A′, B′]sym, v 7→ δv(A, B, A
′, B′),

where

δv(A, B, A
′, B′) := v(A+A′, B +B′)− v(A, B)− v(A′, B′). (3.4)

The V -module structure of M corresponds to the linear map V ⊗M →M , defined
by v ⊗ m 7→ 〈σ(v), m〉, where σ : V → Lquot is any section of the projection
Lquot → V . Proposition 2.2 can then be rephrased as follows:

Lemma 3.1. Under the isomorphisms (3.3), this linear map becomes the linear
map

ABC[A, B]⊗ABA′B′C[A, B, A′, B′]as → ABA′B′C[A, B, A′, B′]as

v ⊗m 7→ −δv ·m,

where the product · is multiplication of polynomials.

3.4. Cocycle associated to Lquot. Set M := C[A, B, A′, B′]as. Then M is a

vector subspace ofM . The formula defining the linear map from Lemma 3.3 extends
to a linear map ABC[A, B]⊗C[A, B, A′, B′]as → C[A, B, A′, B′]as, i.e., to a linear
map V ⊗M →M , which equips M with the structure of a V -module of which M
is a submodule.

We then define a linear map V →M by v 7→ λv, where

λv(A, B, A
′, B′) :=

1

2
(−v(A+A′, B) + v(A +A′, B′) + v(A, B +B′)

− v(A′, B +B′)− v(A, B′) + v(A′, B)).

Multiplication of polynomials restricts to a map C[A, B, A′, B′]sym⊗M →M. For
v, v′ ∈ V we set

c(v, v′) := δv · λv′ − δv′ · λv ∈M. (3.5)

The space M is the intersection of M with ABA′B′C[A, B, A′, B′], which can
be identified with the intersection of the kernels of the maps from C[A, B, A′, B′]
to the rings C[A, B, A′], C[A, B, B′], C[A, A′, B′], C[B, A′, B′] given by the
evaluationsP 7→ P |B′=0, P 7→ P |A′=0, P 7→ P |B=0, P 7→ P |A=0, respectively.

Then, for v ∈ ABC[A, B], we have (λv)|B′=0 = − 1
2 (δv)|B′=0 so that

c(v, v′)|B′=0 = (δv)|B′=0 ·

(

−
1

2

)

(δv′)|B′=0 − (δv′)|B′=0 ·

(

−
1

2

)

(δv)|B′=0 = 0.

Similarly, (λv)|A′=0 = − 1
2 (δv)|A′=0, (λv)|B=0 = − 1

2 (δv)|B=0, and (λv)|A=0 =

− 1
2 (δv)|A=0 so that c(v, v′)|A′=0 = c(v, v′)|B′=0 = c(v, v′)|A=0 = 0. So, the el-

ement c(v, v′) belongs to the subspace ABA′B′C[A, B, A′, B′] of C[A, B, A′, B′];
as this element also belongs to M , it belongs to M .
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By its definition, the map c is a 2-coboundary of the Lie algebra V with values
in the module M . It is therefore also a 2-cocycle in the same module. Since its
takes its values in the submodule M , it is a 2-cocycle with values in M .

We have proved:

Proposition 3.2. The map (v, v′) 7→ c(v, v′) defined by (3.5) takes its values in
M ⊂M . The map c : V × V →M is a 2-cocycle of the abelian Lie algebra V with
values in the V -module M , so c ∈ Z2(V, M).

Lemma 3.3. For u ∈ ABC[A, B] we set

λ0u :=
1

2
A ·

(
u(A+A′, B +B′)− u(A+A′, B)− u(A+A′, B′)

A+A′

−
u(A, B +B′)− u(A, B)− u(A, B′)

A

)

− ((A, B)↔ (A′, B′)).

Then the map u 7→ λ0u is a linear map from ABC[A, B] to M .

Proof. Fix u ∈ ABC[A, B]. For any ϕ ∈ BC[B] we have ϕ(B + B′) − ϕ(B) −
ϕ(B′) ∈ BB′C[B, B′]. Consequently, u(A, B + B′) − u(A, B) − u(A, B′) is in
ABB′C[A, B, B′]. If we set ψ(A, B, B′) := (u(A, B+B′)−u(A, B)−u(A, B′))/A,
then ψ(A, B, B′) ∈ BB′C[A, B, B′]. Also, for any f ∈ C[A] we have f(A+ A′)−
f(A) ∈ A′C[A, A′]. So ψ(A+A′, B, B′)−ψ(A, B, B′) is in A′BB′C[A, A′, B, B′]
and thus

1

2
A · (ψ(A+A′, B, B′)− ψ(A, B, B′)) ∈ AA′BB′C[A, B, B, B′].

As the space AA′BB′C[A, A′, B, B′] is preserved under the exchange ((A, B) ↔
(A′, B′)) and as

λ0u =
(
id− ((A, B)↔ (A′, B′))

)
(
1

2
A · (ψ(A+A′, B, B′)− ψ(A, B, B′))

)

,

the element λ0u belongs to AA′BB′C[A, A′, B, B′]; as λ0u is antisymmetric under
this exchange, it belongs to M . �

We introduce a section s0 : V → Lquot of Lquot → V , given by s0(A
a+1Bb+1) :=

(adx)a(ad y)b([x, y]). We now define two linear maps Φ, Ψ: ABC[A, B]→M by

Φ(u) := 〈s0(AB), s0(u)〉, Ψ(u) := δAB · (λu + λ0u)− δu · λAB.

Lemma 3.4. For u ∈ ABC[A, B] the equality

Φ(A · u) = (A+A′) · Φ(u) +ABA′u(A′, B′)−A′B′Au(A, B)

holds and for u ∈ ABC[B] the equality

Φ(B · u) = (B +B′) · Φ(u)−ABB′u(A′, B′) +A′B′Bu(A, B)

holds.

Proof. Let ξ be an arbitrary element of L. We have

〈[x, y], [x, ξ]〉 = [[x, y], [x, ξ]] +D[x,y]([x, ξ])−D[x,ξ]([x, y])

= [[x, y], [x, ξ]] + [x, D[x,y](ξ)]− [x, [y, [x, ξ]]],
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where the first equality follows from the definition of the bracket 〈 , 〉 and the second
equality follows from the facts that D[x,y] is a derivation killing x and that D[x,y]

is a derivation for which the images of x and y are known. Moreover,

〈[x, y], ξ〉 = [[x, y], ξ] +D[x,y](ξ)−Dξ([x, y]) = [[x, y], ξ] +D[x,y](ξ)− [x, [y, ξ]].

So,

〈[x, y], [x, ξ]〉 − [x, 〈[x, y], ξ〉] = [[x, y], [x, ξ]], (3.6)

and similarly

〈[x, y], [y, ξ]〉 − [y, 〈[x, y], ξ〉] = −[[x, y], [y, ξ]]. (3.7)

When a, b > 0, setting ξ = (adx)a(ad y)b([x, y]) in Equation (3.6), we obtain

〈[x, y], (adx)a+1(ad y)b([x, y])〉

= [x, 〈[x, y], (adx)a(ad y)b([x, y])〉] + [[x, y], (adx)a+1(ad y)b([x, y])]. (3.8)

The bijection L1/L2 ≃ L1 → ABA′B′C[A, B, A′, B′]as (see (3.1) and (3.3)) sends
the element 〈[x, y], (adx)a(ad y)b([x, y])〉 to Φ(Aa+1Bb+1), the endomorphism ad(x)
to multiplication by A + A′, and the commutator [[x, y], (adx)a+1(ad y)b([x, y])]
to the element AB(A′)a+2(B′)a+1 − ((A, B)↔ (A′, B′)).

Equation (3.8) then implies that

Φ(Aa+2Bb+1) = (A+A′) · Φ(Aa+1Bb+1) +AB(A′)a+2(B′)a+1 −Aa+2Ba+1A′B′,

which is the first identity in the lemma in the case u = Aa+1Bb+1.
When b > 0, setting ξ = (ad y)b([x, y]) in equation (3.7), we obtain

〈[x, y], (ad y)b+1([x, y])〉 = [y, 〈[x, y], (ad y)b([x, y])〉]− [[x, y], (ad y)b+1([x, y])].
(3.9)

The bijection L1/L2 → ABA′B′C[A, B, A′, B′]as sends 〈[x, y], (ad y)b([x, y])〉 to
Φ(ABb+1), the endomorphism ad(y) to multiplication by B +B′ and the commu-
tator [[x, y], (ad y)b([x, y])] to the element ABA′(B′)b+2 − ABb+2A′B′. Equation
(3.9) then implies that

Φ(ABb+2) = (B +B′) · Φ(ABb+1)−ABA′(B′)b+2 +ABb+2A′B′,

which is the second identity in the lemma for u = ABb+1. �

Lemma 3.5. For u ∈ ABC[A, B] the equality

Ψ(A · u) = (A+A′) ·Ψ(u) +ABA′u(A′, B′)−A′B′Au(A, B)

holds, and for u ∈ ABC[B] the equality

Ψ(B · u) = (B +B′) ·Ψ(u)−ABB′u(A′, B′) +A′B′Bu(A, B)

holds.
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Proof. We compute

Ψ(u) =
AA′(B −B′)

A+A′
u(A+A′, B +B′)−

A(AB′ +A′B)

A+A′
u(A+A′, B)

+
A′(AB′ +A′B)

A+A′
u(A+A′, B′) +AB′u(A, B)−A′Bu(A′, B′), (3.10)

which implies the first claim in the lemma. Moreover, equation (3.10) implies that
for l > 1 one has

Ψ(ABl) = AA′(B −B′)(B +B′)l −AA′Bl+1 +AA′(B′)l+1,

which implies the second claim. �

Lemma 3.6. For u ∈ ABC[A, B] the identity

〈s0(AB), s0(u)〉 = δAB · (λu + λ0u)− δu · λAB

holds.

Proof. By the second parts of Lemmas 3.4 and 3.5, the sequences (Φ(ABl))l>1 and
(Ψ(ABl))l>1 obey the same recurrence relation; moreover,

Φ(AB) = 〈s0(AB), s0(AB)〉 = 0 = Ψ(AB),

where the last equality follows from the fact that λ0AB = 0. So, the initial terms of
the two sequences coincide; we deduce that for l > 1 we have Φ(ABl) = Ψ(ABl).

By the first parts of Lemmas 3.4 and 3.5, for a fixed integer l > 1, the se-
quences (Φ(AkBl))k>1 and (Ψ(AkBk))k>1 obey the same recurrence relation. As
their initial terms coincide, we deduce that these two sequences are equal so that
Φ(AkBl) = Ψ(AkBl) for all k, l > 1, which implies the lemma. �

Lemma 3.7. For u, v ∈ ABC[A, B] the equality

〈s0(u), s0(v)〉 = δu · (λv + λ0v)− δv · (λu + λ0u)

holds.

Proof. For u, v ∈ ABC[A, B], set

Φ(u, v) := 〈s0(u), s0(v)〉, Ψ(u, v) := δu · (λv + λ0v)− δv · (λu + λ0u).

So, Φ, Ψ are linear maps Λ2(V )→M, both satisfying the identity

δu · f(v, w) + δv · f(w, u) + δw · f(u, v) = 0 (3.11)

for all u, v, w ∈ V . In the case f = Φ, this identity follows from the fact that Φ is
a 2-cocycle for V with values in M , and from the explicit description of the action
of V on M ; in the case f = Ψ, this identity follows from an explicit calculation
(using the fact that Ψ is a 2-coboundary and therefore a 2-cocycle).

Moreover, Φ(AB, u) = Φ(u), Ψ(AB, u) = Ψ(u). Combining these identities
with (3.11) for w = AB, f = Φ, Ψ, we deduce

δAB · Φ(u, v) = δu · Φ(v) − δv · Φ(u), δAB ·Ψ(u, v) = δu ·Ψ(v)− δv ·Ψ(u).

As Φ(u) = Ψ(u), Φ(v) = Ψ(v), it follows that

δAB · (Φ(u, v)−Ψ(u, v)) = 0,
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where the product is in C[A, A′, B, B′]. As δAB = AB′ + A′B, we conclude that
Φ(u, v) = Ψ(u, v), which implies the lemma. �

For u ∈ ABC[A, B], we set s(u) := s0(u) + λ0u. The map s : V → Lquot is a
section of the projection Lquot → V . Then

〈s(u), s(v)〉 = 〈s0(u) + λ0u, s0(v) + λ0v〉 = 〈s0(u), s0(v)〉+ 〈s0(u), λ
0
v〉+ 〈λ

0
u, s0(v)〉

= δu · (λv + λ0v)− δv · (λu + λ0u)− δu · λ
0
v + δv · λ

0
u

= δu · λv − δv · λu,

where the second inequality follows from commutativity of the Lie subalgebra M
of Lquot and the third equality follows from Lemma 3.7 and Lemma 3.1. All this
proves:

Proposition 3.8. The map s : V → Lquot is a section of the projection Lquot → V
such that for all v, v′ ∈ V one has 〈s(v), s(v′)〉 = c(v, v′).

Remark 3.9. To the short exact sequence 0 → M → M → M/M → 0 of V -
modules is associated a long exact sequence in Lie algebra cohomology

· · · → H1(V, M/M)→ H2(V, M)→ H2(V, M)→ · · ·

Propositions 3.2 and 3.8 then say that
(a) the element [Lquot] ∈ H

2(V, M) corresponding to the exact sequence (3.2)

lies in the kernel of the map H2(V, M)→ H2(V, M);
(b) if λ is the linear map V →M/M defined by the composition of λ : V → M

with the projection M →M/M , then λ is an element of H1(V, M/M);

(c) [Lquot] is the image of λ under the connecting homomorphismH1(V, M/M)→
H2(V, M).

4. Lower Bound for the Structure Associated with the Lie
Subalgebra of an Extension of Abelian Lie Algebras

In this section, we associate to each vector space V (or more generally each
object in a monoidal abelian category C0) a category of V -structures (Section 4.2).
We then show that any extension 0 → g1 → g → g0 → 0 gives rise to a g0-
structure M(g). In the same situation, we associate an X-structure Mmin(X) to
any subobject X →֒ g0 (Section 4.3). The main result of the section is Proposition
4.1, which establishes a lower bound property of Mmin(X). In Section 4.4, we make
explicit the particular case where C0 is the category GF of graded-filtered vector
spaces, and the consequences of Proposition 4.1 in terms of Hilbert–Poincaré series.

4.1. Graded modules associated to modules over symmetric algebras.

Let V be a vector space and let M be a module over the symmetric algebra S(V ).
Set grV (M) :=

⊕

i gr
i
V (M), where griV (M) = Si(V )·M/Si+1(V )·M . Then grV (M)

is a graded module over S(V ), where S(V ) is graded by assigning degree 1 to V .
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4.2. Structures associated with an extension of abelian Lie algebras. For
V a vector space, define a V -structure as the data of:

(1) a graded vector space M = M0 ⊕M1 ⊕ · · · , with Mi of degree i+ 2;
(2) a S(V )-module structure on M, compatible with the grading of S(V ) for

which V has degree 1, and
(3) a linear map Λ2(V ) → M0, v ∧ v

′ 7→ {v, v′}, such that the identity v ·
{v′, v′′}+ cycl. perm. = 0 holds.

One defines morphisms of V -structures in the natural way. V -structures then form
a category, where a morphism is mono (resp., epi) if and only if the underlying
morphism of graded S(V )-modules is injective (resp., surjective).

Let 0 → g1 → g → g0 → 0 be an extension of abelian Lie algebras. As we have
seen (Section 3.1), it gives rise to a S(g0)-module structure on g1. Let M(g) be
the graded module grg0

(g1), with degrees shifted by 2; so Mi(g) = grig0
(g1). Let

c̃ ∈ Z2(g0, g1) be any cocycle representing the extension 0 → g1 → g → g0 → 0.
Composing the map c̃ : Λ2(g0) → g1 with the projection g1 → M0(g), one obtains
a linear map Λ2(g0) → M0(g), which turns out to be independent of the choice
of c̃. One then checks that the pair M(g) := (graded vector space M(g), linear
map Λ2(g0) → M0(g)) yields a g0-structure canonically attached to the extension
0 → g1 → g → g0 → 0. One also checks that this g0-structure can be defined
in terms of the invariants (g0-module structure on g1, cocycle class in H2(g0, g1))
attached to the extension.

4.3. Lower bound structures in the case of Lie subalgebras. Let 0→ g1 →
g→ g0 → 0 be an extension of abelian Lie algebras. Let h ⊂ g be a Lie subalgebra
of g and set X := im(h → g → g0). Set Mod := h ∩ g1. Then h is an extension of
abelian Lie algebras 0→ Mod → h→ X → 0. We set:

M(h) := the X-structure attached to the extension 0→ Mod → h→ X → 0
(4.1)

(see previous Section).
The morphism Mod →֒ g1 of S(X)-modules induces a morphism grX(Mod) →

grX(g1) of graded S(X)-modules. Let Q be the image of this morphism; then Q is
a graded S(X)-module, which when equipped with the natural map Λ2(X) → Q0

gives rise to an X-structure. The above morphism then factors as grX(Mod) ։

Q →֒ grX(g1), whose degree 0 part is denoted gr0X(Mod) ։ Q0 →֒ gr0X(g1). The
cocycle c gives rise to a linear map Λ2(X)→ gr0X(Mod).

IfM is a graded S(X)-module and if Sub is a subspace of the degree 0 part ofM ,
we denote by 〈Sub〉M the S(X)-submodule of M generated by Sub, so 〈Sub〉M =
im(S(V )⊗ Sub→M).

Then there is an injection of graded S(X)-modules

〈im(Λ2(X)→ gr0X(Mod))〉grX(Mod) →֒ grX(Mod).

The image of the left side of this inclusion in Q under the morphism grX(Mod)→ Q
is the space 〈im(Λ2(X)→ Q0)〉Q, and the image of this space in grX(g1) under the
morphism Q → grX(g1) is 〈im(Λ2(X) → gr0X(g1))〉grX(g1). Since the morphism
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Q → grX(g1) is injective, its restriction to a morphism 〈im(Λ2(X) → Q0)〉Q →
〈im(Λ2(X)→ gr0X(g1))〉grX (g1) is an isomorphism.

It follows that there is a diagram

〈im(Λ2(X)→ gr0X(Mod))〉grX (Mod)

����

� � // M(h) ≃ grX(Mod)

����
〈im(Λ2(X)→ Q0)〉Q

� � //

≃

��

Q
� _

��
〈im(Λ2(X)→ gr0X(g1))〉grX(g1)

� � // grX(g1)

of S(X)-modules. Set

Mmin(X) := 〈im(Λ2(X)→ gr0X(g1))〉grX (g1); (4.2)

When equipped with the natural map Λ2(X) → Mmin(X), this graded S(X)-
module gives rise to a X-structure.

From the above diagram, one extracts the following diagram M(h) ։ Q ←֓
Mmin(X), from which one derives the following result.

Proposition 4.1. Let 0 → g1 → g → g0 → 0 be an extension of abelian Lie
algebras and let X be any vector subspace of g0. If h is any Lie subalgebra of g
such that im(h ⊂ g → g0) = X, then the X-structure Mmin(X) defined in (4.2) is
a subquotient of the X-structure M(h) defined in (4.1).

4.4. Graded-filtered analogues. In the preceding part of this section, the basic
category is the monoidal category of vector spaces. One can replace it by the
monoidal category GF of graded-filtered vector spaces, whose objects are vector
spaces V equipped with a grading V =

⊕

n>0 V [n] (the weight grading) and a

decreasing filtration V = F 0(V ) ⊃ F 1(V ) ⊃ · · · (the depth filtration), such that:
(i) each V [n] is finite-dimensional, (ii) the filtration and the grading are compatible,
i.e., for any i > 0, F i(V ) =

⊕

n>0 F
i(V ) ∩ V [n].

The construction of Section 4.3 has the following analogue. To Lie algebras
g, g0, g1 in GF , fitting in an exact sequence 0 → g1 → g → g0 → 0 and such that
g0, g1 are abelian, one associates as before the S(g0)-module M(g) and the map
Λ2(g0)→M(g), which make sense in the category GF .

The analogue of Proposition 4.1 is the following: 0 → g1 → g → g0 → 0 is
an extension of Lie algebras in GF with g0, g1 abelian and X is a subobject of g0
in GF . The X-structure Mmin(X) then makes sense in GF . Then for any Lie
subalgebra h of g in GF such that im(h ⊂ g→ g0) = X, Mmin(X) is a subquotient
of M(h) as X-structures in GF .

To the object V of GF , one associates its Hilbert–Poincaré series PV (t) :=
∑

n>0 dimV [n]tn ∈ N[[t]] and the double series

PV (t, u) :=
∑

n,i>0

dimgriF (V [n])tnui ∈ N[u][[t]].
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We have PX(t) = PX(t, 1). As these assignments GF → N[[t]], GF → N[u][[t]] are
non-decreasing, one derives in the above situation: (1) PMmin(X)(t, u) 6 PM(h)(t, u),
and (2) PMmin(X)(t) 6 PM(h)(t), 6 meaning that the difference of two sides are
series with non-negative coefficients. Since PM(h)(t) = Ph∩g1

(t) and PM(h)(t, u) =
Ph∩g1

(t, u), we obtain:

(1) PMmin(X)(t, u) 6 Ph∩g1
(t, u),

(2) PMmin(X)(t) 6 Ph∩g1
(t).

5. The Σ-Structure [gr1lcs(grt1)] and the Lower Bound Mmin(Σ)

In this section, we give the consequences of the results of Section 4 for structures
associated to the Lie algebra grt1: we produce a lower bound Mmin(Σ) for the
Σ-structure [gr1lcs(grt1)] (Sections 5.1, 5.2). We make explicit the ingredients of
the construction of Mmin(Σ) in Section 5.3 and relate this construction to some
commutative algebra (Section 5.4).

5.1. The lower bound result. In Section 3.2, we defined a Lie algebra Lquot

in the category GF , fitting in an exact sequence 0 → L1 → Lquot → L0 → 0 of
Lie algebras in GF , where both L0 and L1 are abelian. There is a sequence of
morphisms of Lie algebras in GF , grt1 →֒ L ։ Lquot; composing them, we obtain
a morphism grt1 → Lquot. Set

H := im(grt1 → Lquot),

and Σ := im(H ⊂ Lquot → L0). Then Σ = im(grt1 →֒ L ։ L0), therefore

Σ = gr0lcs(grt1)

The image of Σ under the isomorphism L0 ≃ ABC[A, B] has been computed in
[En1], namely

Σ ≃
⊕

odd k>3

C · σk, where σk(A, B) := Ak +Bk + (−A−B)k ∈ ABC[A, B]

for any odd k > 3. The structure of Σ as an object of GF is described as follows:
the weight degree n part of Σ is Σ[n] = C ·σn if n > 3 is odd, and is 0 otherwise; the
depth filtration is described by F 0

dpth(Σ) = F 1
dpth(Σ) = Σ, F 2

dpth(Σ) = F 3
dpth(Σ) =

. . . = 0.
One computes H∩ L1 = ker(grt1 →֒ L ։ L0) = gr1lcs(grt1), so there is a commu-

tative diagram

0 // L1
// Lquot

// L0
// 0

0 // gr1lcs(grt1)
//

?�

OO

H //
?�

OO

Σ
?�

OO

// 0

(5.1)

The situation is therefore that of the GF version of Proposition 4.1 described in
Section 4.4 with the following correspondence

0→ g1 → g→ g0 → 0 0→ L1 → Lquot → L0 → 0

Mod , h, X gr1lcs(grt1), H, Σ
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Proposition 4.1 and Section 4.4 then yield the following. Let [gr1lcs(grt1)] := M(H)
be the Σ-structure associated with the bottom line of (5.1); it is given by (a) the
S(Σ)-module M = M0⊕M1⊕ . . ., where Mi = Si(Σ) ·gr1lcs(grt)/S

i+1(Σ) ·gr1lcs(grt),
(b) the linear map Λ2(Σ)→M0.

Proposition 5.1. (1) The Σ-structure Mmin(Σ) is a subquotient of the Σ-structure
[gr1lcs(grt1)];

(2) PMmin(Σ)(t) 6 Pgr1
lcs

(grt1)
(t) (generating series relative to the weight degree);

(3) PMmin(Σ)(t, u) 6 Pgr1
lcs

(grt1)
(t, u) (generating series relative to the weight de-

gree and the depth filtration).

5.2. Construction of the Σ-structure Mmin(Σ). We now recall the construction
of the Σ-structure Mmin(Σ).

1) The exact sequence 0 → L1 → Lquot → L0 → 0 yields a S(L0)-module
structure on L1, and therefore a S(Σ)-module structure on the same space. One
associates to it the graded module grΣ(L1) = gr0Σ(L1) ⊕ gr1Σ(L1) ⊕ · · · , where
griΣ(L1) = Si(Σ)·L1/S

i+1(Σ)·L1 over the graded algebra S(Σ) (the grading implied
here is the Σ-grading for which Σ has degree 1 in S(Σ)).

2) A linear map { , } : Λ2(Σ) → gr0Σ(L1) = L1/Σ · L1 is defined by σ ∧ σ′ 7→
(class of c(σ, σ′)), where c ∈ Z2(L0, L1) is any cocycle representing the extension
0→ L1 → Lquot → L0 → 0.

3) One then sets

Mmin
0 (Σ) := im(Λ2(Σ)

{ , }
−−→ gr0Σ(L1)) ⊂ gr0Σ(L1),

Mmin
i (Σ) := Si(Σ) ·Mmin

0 (Σ) ⊂ griΣ(L1)

for i > 1 (the latter formula is also correct for i = 0).
4) ThenMmin(Σ) := Mmin

0 (Σ)⊕Mmin
1 (Σ)⊕· · · is a graded S(Σ)-module, equipped

with a map Λ2(Σ) → Mmin
0 (Σ) satisfying the axioms of a Σ-structure. This Σ-

structure will be also called Mmin(Σ).

5.3. Ingredients of the construction of Mmin(Σ). The construction of Mmin(Σ)
in the previous Section uses the following ingredients: 1) the action of S(Σ) on L1,
2) the linear map { , } : Λ2(Σ) → gr0Σ(L1). In the present Section, we compute
these objects explicitly.

According to (3.1) and (3.3), L1 ≃ M = ABA′B′C[A, B, A′, B′]as. For k > 0,
set

σ̃k(A, B, A
′, B′) := Ak+Bk+(−A−B)k+(A′)k+(B′)k+(−A′−B′)k+(−A−A′)k

+ (−B −B′)k + (A+B +A′ +B′)k ∈ C[A, B, A′, B′]sym. (5.2)

For any odd k > 3, we have
δσk

= −σ̃k, (5.3)

which together with Lemma 3.1 implies:

Lemma 5.2 (Action of Σ on L1). The isomorphism L1 ≃M takes the restriction
Σ⊗ L1 → L1 of the action map of S(Σ) on L1 to the map

Σ⊗M →M, σk ⊗m 7→ σ̃k ·m,
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where · is the product of symmetric and antisymmetric (under (A, B)↔ (A′, B′))
polynomials.

For any odd k > 3, set

λk(A, B, A
′, B′) := (A+B+A′)k−(A+A′+B′)k−(A+B+B′)k+(B+A′+B′)k

+ (A+B′)k − (A′ +B)k ∈ C[A, B, A′, B′]as =M. (5.4)

One checks that λk = 2λσk
, where σ 7→ λσ is the map defined in Section 3.4.

Together with explicit formula (3.5) for the cocycle c, computation (5.3) of the
restriction of v 7→ δv to Σ, and Proposition 3.2 on the functional properties of this
cocycle, this implies that for odd i, j > 3, c(σi, σj) = −2(σ̃i ·λj − σ̃j ·λi) ∈M . We
will set

τij := σ̃i · λj − σ̃j · λi ∈M. (5.5)

Proposition 3.8 relating the cocycle c with the extension 0→ L1 → Lquot → L0 →
0, relation c(σi, σj) = −2τij , and the relation between the bracket { , } defined in
Section 5.2(2) and cocycles, imply:

Lemma 5.3. The map { , } : Λ2(Σ) → gr0Σ(L1) ≃ L1/Σ · L1 = M/Σ ·M is given
by {σi, σj} = (class of −2τij), for odd i, j > 3.

5.4. Expression of Mmin(Σ) in terms of commutative algebra

5.4.1. The ring A. The vector space C2 can be equipped with the structure of
an irreducible module over the symmetric group S3. The external square of this
module is a (S3)

2-module with underlying vector space V := (C2)⊗2. The group
(S3)

2 is a subgroup of the wreath product G := S3 ≀S2 = (S3)
2⋊S2 (where S2 acts

by permutation of factors); the (S3)
2-module structure of V can be extended to

this group by the condition that the non-trivial element of S2 acts by permutation
of the factors of the tensor square. This defines a G-module structure on V. One
then defines the corresponding invariant ring

A := S(V)G.

The grading of the symmetric algebra S(V) (for which the elements of V have
degree 1) restricts to a grading of A, which will be called the weight degree.

The ring A has the following interpretation in terms of polynomial algebras.
Recall that A, B, A′, B′ are free commuting variables. We identify the ring S(V)
with the polynomial ring C[A, B, A′, B′]. A generating family of G = S3 ≀ S2 is
(12)× 1, (123)× 1, and the nontrivial element of S2 ⊂ S3 ≀ S2.

These generators act on a polynomial in C[A,B,A′,B′] by replacing (A,B,A′,B′)
by the following values:

(B, A, B′, A′), (B, −A−B, B′, −A′ −B′), (A, A′, B, B′).

We then identify A with the subring of C[A, B, A′, B′] of all polynomials invari-
ant under these replacements.

Define the depth grading in S(V) = C[A, B, A′, B′] by assigning degree 0 to
A, A′ and degree 1 to B, B′. The corresponding decreasing filtration is defined by
F i
dpth(S(V)) :=

⊕

j|j>i{part of S(V) of depth degree j}. We also call the induced
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filtration on A the depth filtration; it is defined by F i
dpth(A) := F i

dpth(S(V))∩A for
any i > 0. This is an algebra filtration on A, compatible with the weight degree
grading of A.

5.4.2. The ring grΣ(A). The ring A is a subring of C[A, B, A′, B′]sym. There is an
injective linear map Σ →֒ C[A, B, A′, B′]sym given by σi 7→ σ̃i for odd i > 3. We
use this map to identify Σ with a subspace of C[A, B, A′, B′]sym. Then there is a
double inclusion

Σ ⊂ A ⊂ C[A, B, A′, B′]sym. (5.6)

Define I to be the ideal of A generated by Σ, so

I = (Σ) ⊂ A.

One defines a decreasing ring filtration A = F 0(A) ⊃ F 1(A) ⊃ · · · by F k(A) := Ik

for k > 0, and grΣ(A) as the associated graded ring. So

grΣ(A) =
⊕

k>0

grkΣ(A), where grkΣ(A) = Ik/Ik+1.

The grading of A corresponding to this decomposition will be called the Σ-grading.
So grΣ(A) is bigraded by (weight degree, Σ-degree).

Define the depth filtration on each grkΣ(A), k > 0 by

F i
dpth(gr

k
Σ(A)) := (F i

dpth(A) ∩ Ik)/(F i
dpth(A) ∩ Ik+1) →֒ grkΣ(A)

for any i > 0 and set F i
dpth(gr

k
Σ(A)) :=

⊕

k>0 F
i
dpth(gr

k
Σ(A)). This defines an

algebra filtration on grΣ(A), compatible with its bigrading by (weight degree, Σ-
degree).

5.4.3. The ring S. Composing the linear map Σ→ I with the projection I→ I/I2 =
gr1Σ(A), one obtains a linear map Σ → gr1Σ(A) →֒ grΣ(A). Equip the symmetric
algebra S(Σ) of Σ with the Σ-grading, for which the degree of Σ is 1. Then S(Σ) is
bigraded by (Σ-degree, weight degree). The linear map Σ → grΣ(A) then induces
a bigraded morphism S(Σ)→ grΣ(A). We then define

S := im(S(Σ)→ grΣ(A));

this is a bigraded subring of grΣ(A). Its decomposition for the Σ-degree is denoted
S =

⊕

k>0 S[k], where S[k] := im(Sk(Σ) → grΣ(A)) (a subspace of grkΣ(A)). We

define the depth filtration on S[k] by F k
dpth(S[k]) = S[k], F k+1

dpth(S[k]) = 0, and

the depth filtration on S by F i
dpth(S) :=

⊕

k>0 F
i
dpth(S[k]). This filtration of S is

compatible with the bigrading and with the morphisms S(Σ) ։ S →֒ grΣ(A).

5.4.4. The A-module structure of M . The linear map Σ→ A (see (5.6)) induces a
ring morphism S(Σ)→ A. Recall also that M is a S(Σ)-module (Section 5.2).

As M = ABA′B′C[A, B, A′, B′]as is a module over C[A, B, A′, B′]sym, and as
A is a subring of C[A, B, A′, B′]sym, the S(Σ)-module structure of M lifts to a
module structure over the ring A.

Define the weight grading of M by assigning degree 1 to A, B, A′, B′, the depth
grading of M by assigning degree 0 to A, A′ and degree 1 to B, B′, and the depth
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filtration of M as the corresponding decreasing filtration. Then the A-module
structure of M is compatible with weights gradings and depth filtrations.

5.4.5. The grΣ(A)-module structure of grΣ(M). For each k > 0, we have Ik =
im(Sk(Σ)→ A)·A, therefore Ik ·M = im(Sk(Σ)→ A)·A·M = im(Sk(Σ)→ A)·M =
Sk(Σ) ·M . It follows that the decreasing filtration M ⊃ Σ ·M ⊃ S2(Σ) ·M ⊃ · · ·
can be identified with the decreasing filtration M ⊃ I ·M ⊃ I2 ·M ⊃ · · · . The
associated graded space grΣ(M) ≃ grΣ(L1) (see Section 5.2) is therefore given by

grΣ(M) =
⊕

k>0

grkΣ(M), where grkΣ(M) = Ik ·M/Ik+1 ·M.

We define the Σ-degree on grΣ(M) by setting the degree of grkΣ(M) to be k + 2.
The above expression of grΣ(M) shows that this space is naturally equipped with
a module structure over grΣ(A). One checks that it is compatible with the weight
degrees, the Σ-degrees and the depth filtration on both sides.

Recall that there is a sequence of algebra morphisms S(Σ) ։ S →֒ grΣ(A) (see
Section 5.4.3). The S(Σ)-module structure of grΣ(M) (Section 5.2, 1)) is induced by
the above grΣ(A)-module structure though this morphism. This module structure
also induces a S-module structure on grΣ(M).

5.4.6. Expression of Mmin(Σ). According to Section 5.2, 3), one has

Mmin
0 (Σ) = im(Λ2(Σ)

{ , }
−−→ gr0Σ(L1)) ⊂ gr0Σ(M),

Mmin
i (Σ) = S[i] ·Mmin

0 (Σ) ⊂ griΣ(M) for i > 1,

so

Mmin(Σ) = S ·Mmin
0 (Σ) ⊂ grΣ(M).

6. Presentation of Some Commutative Rings

In this section, we compute the presentations of some of the commutative rings
arising in Section 5.4.

6.1. Structure of A. Recall that the ring A is graded by the weight degree. For
k > 0, the elements σ̃k defined by (5.2) belong to C[A, B, A′, B′]sym; one checks
that they also belong to the subalgebra A ⊂ C[A, B, A′, B′]as.

Proposition 6.1. The graded ring A has the following presentation: the generators
are σ̃i, i = 2, 3, 4, 5, 6; the only relation is

(σ̃5)
2 −

25

18
σ̃2σ̃3σ̃5 +

(275

108
σ̃4 −

25

162
(σ̃2)

2
)

· (σ̃3)
2

+
(

σ̃4 −
1

4
(σ̃2)

2
)

·
(

−
125

432
(σ̃2)

3 +
175

72
σ̃2σ̃4 −

25

6
σ̃6

)

= 0;

the degree of each σ̃i is i.

Proof. The Hilbert series of A can be computed by Molien’s theorem [M], [St]; one
obtains

PA(t) =
1 + t5

(1− t2)(1 − t3)(1− t4)(1− t6)
. (6.1)
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Moreover, it can be checked through Magma [BCP] that A is generated by the
elements σ̃i, i = 2, 3, 4, 5, 6; that the σ̃i, i = 2, 3, 4, 6, generate a free polynomial
ring, and that σ̃5 is quadratic over this ring. The quadratic relation satisfied by σ̃5
can be determined though a Maple computation [MGH+]; this the relation given
in the statement of the proposition. �

6.2. Structure of gr0Σ(A)

Lemma 6.2. If i > 3 is odd, then the element σ̃i ∈ A belongs to the ideal (σ̃3, σ̃5)
of A generated by σ̃3 and σ̃5.

Proof. Recall that A is generated by σ̃i, i = 2, . . . , 6. If i is an integer > 0, the
degree i part of A is linearly spanned by the monomials (σ̃2)

i2 · · · (σ̃6)
i6 , where

2i2 +3i3 + · · ·+6i6 = i. It follows that the odd degree part of A is contained in its
ideal (σ̃3, σ̃5). If i is odd, then σ̃i has degree i, so it belongs to this ideal. �

Recall that the ring gr0Σ(A) is graded by the weight degree.

Proposition 6.3. For i = 2, 4, 6, let σ̇i be the image of σ̃i under A → A/I =
gr0Σ(A). The ring gr0Σ(A) has the following presentation: generators σ̇i, with i =
2, 4, 6; relation

(

σ̇4 −
1

4
(σ̇2)

2
)

·
(

−
125

432
(σ̇2)

3 +
175

72
σ̇2σ̇4 −

25

6
σ̇6

)

= 0;

the degree of each σ̇i is i.

Proof. Lemma 6.2 implies that the ideals I = (σ̃3, σ̃5, σ̃7, . . .) and (σ̃3, σ̃5) of A
coincide. As gr0Σ(A) = A/I, it follows that gr0Σ(A) = A/(σ̃3, σ̃5). Combining
this result with the presentation of A obtained in Proposition 6.1, one obtains the
announced presentation of gr0Σ(A). �

6.3. Structure of grΣ(A). Recall that the ring gr0Σ(A) is bigraded by (weight
degree, Σ-degree).

Let gr0Σ(A)[x3, x5] be the polynomial algebra in two variables x3, x5 with coef-
ficients in gr0Σ(A). It is equipped with a bigrading, such that σ̇i has bidegree (i, 0)
(i = 2, 4, 6) and xi has bidegree (i, 1) (i = 3, 5).

Theorem 6.4 (Structure of grΣ(A)). There is a unique isomorphism grΣ(A)
∼
→

gr0Σ(A)[x3, x5] of bigraded algebras, whose inverse can be characterized as follows :
its restriction to gr0Σ(A) coincides with the canonical inclusion gr0Σ(A) →֒ grΣ(A),
and x3, x5 map to the classes σ̇3, σ̇5 of σ̃3, σ̃5 in I/I2.

Proof. There is a unique morphism ϕ : gr0Σ(A)[x3, x5] → grΣ(A) of bigraded alge-
bras, whose restriction to gr0Σ(A) is gr

0
Σ(A) →֒ grΣ(A) and taking x3, x5 to σ̇3, σ̇5.

The algebra grΣ(A) is known to be generated by its parts of Σ-degree 0 and 1,
namely gr0Σ(A) and gr1Σ(A). According to Lemma 6.2, the ideals I and (σ̃3, σ̃5) =
A · σ̃3+A · σ̃5 of A coincide. Therefore gr1Σ(A) = I/I2 = im(A · σ̃3+A · σ̃5 → I/I2) =
gr0Σ(A) · σ̇3 +gr0Σ(A) · σ̇5. It follows that grΣ(A) is generated by gr0Σ(A), σ̇3 and σ̇5.
The restriction of ϕ to the part of Σ-degree 0 is the identity on gr0Σ(A), therefore
im(ϕ) ⊃ gr0Σ(A). The image of ϕ also contains the images of x3 and x5, which are
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σ̇3 and σ̇5. The image of ϕ therefore contains a generating part of grΣ(A), and so
coincides with it. It follows that ϕ is onto.

The algebra grΣ(A) is constructed out of A using a filtration which is compatible
with the weight degree. It follows that the Hilbert series PgrΣ(A)(t) of grΣ(A) with
respect to the weight degree coincides with that of A given by (6.1), so

PgrΣ(A)(t) =
1 + t5

(1− t2)(1 − t3)(1 − t4)(1 − t6)
.

Let C[ξ2, ξ4, ξ6]/(ξ4 · ξ6) be the graded commutative algebra with generators
ξ2, ξ4, ξ6 and relation ξ4 · ξ6 = 0, with degree given by deg(ξi) = i. As basis of
C[ξ2, ξ4, ξ6]/(ξ4 · ξ6) is then given by the union of families ξa2 ξ

b
4 (a > 0, b > 0) and

ξc2ξ
d
6 (c > 0, d > 0). Therefore the Hilbert series of C[ξ2, ξ4, ξ6]/(ξ4 · ξ6) is

PC[ξ2,ξ4,ξ6]/(ξ4·ξ6)(t) =
1

(1 − t2)(1− t4)
+

1

(1− t2)(1− t6)
−

1

1− t2

=
1− t10

(1 − t2)(1− t4)(1− t6)
.

It follows from Proposition 6.3 that there is a unique isomorphism gr0Σ(A) ≃
C[ξ2, ξ4, ξ6]/(ξ4 · ξ6) of graded algebras, given by ξ2 7→ σ̇2, ξ4 7→ σ̇4 −

1
4 (σ̇2)

2,

ξ6 7→ −
125
432 (σ̇2)

3 + 175
72 σ̇2σ̃4 −

25
6 σ̇6. Therefore the Hilbert series of gr0Σ(A) is

Pgr0
Σ
(A)(t) = PC[ξ2,ξ4,ξ6]/(ξ4·ξ6)(t) =

1− t10

(1− t2)(1 − t4)(1− t6)
.

The Hilbert series of the polynomial algebra C[x3, x5] is PC[x3,x5](t) =
1

(1−t3)(1−t5) .

As gr0Σ(A)[x3, x5] is isomorphic to the tensor product of the graded algebras gr0Σ(A)
and C[x3, x5], its Hilbert series is given by

Pgr0
Σ
(A)[x3,x5](t) = Pgr0

Σ
(A)(t) · PC[x3,x5](t) =

1 + t5

(1 − t2)(1− t3)(1− t4)(1 − t6)
,

therefore Pgr0
Σ
(A)[x3,x5](t) = PgrΣ(A)(t): the Hilbert series of gr0Σ(A)[x3, x5] and

grΣ(A) with respect to the weight degree coincide. This result, combined with the
fact that ϕ is onto, implies that ϕ is an isomorphism of graded vector spaces (for
the weight degree). As ϕ is also compatible with the bigrading (weight degree,
Σ-degree), it is an isomorphism of bigraded vector spaces. �

6.4. Results on S. Lemma 6.2 says that for any odd i > 3, there exist elements
Pi3, Pi5 in A, of respective weight degrees i− 3, i− 5, such that

σ̃i = Pi3 · σ̃3 + Pi5 · σ̃5 (6.2)

(in A). We choose such a pair (Pi3, Pi5) for each odd i > 3.
For each odd i > 3, let σ̇i be the image of σ̃i ∈ I in I/I2 = gr1Σ(A), and let

Ṗi3, Ṗi5 be the images of Pi3, Pi5 in A/I = gr0Σ(A). Then (6.2) implies

σ̇i = Ṗi3 · σ̇3 + Ṗi5 · σ̇5
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(in gr1Σ(A)). Then S is the subring of grΣ(A) generated by the σ̇i for all odd i > 3.
Under the isomorphism grΣ(A) ≃ gr0Σ(A)[x3, x5] (Theorem 6.4), S is isomorphic to

the subring of gr0Σ(A)[x3, x5] generated by x3, x5 and the Ṗi3 ·x3 + Ṗi5 ·x5 (i > 7).

7. Computation of the Lowest Degree Part Mmin
0 (Σ) of the

Lower Bound Σ-Structure

Recall that Mmin
0 (Σ) is a subspace of gr0Σ(M) =M/I ·M , graded by the weight

grading. The space gr0Σ(M) is a module over the ring gr0Σ(A) = A/I which contains
a particular element τ̇35 (see (5.5); we denote by x 7→ ẋ the projection map M →
gr0Σ(M)). In this section, we show the equality, inside gr0Σ(M), of Mmin

0 (Σ) and
gr0Σ(A) · τ̇35, the cyclic gr0Σ(A)-submodule generated by τ̇35.

We first prove the inclusion Mmin
0 (Σ) ⊂ gr0Σ(A) · τ̇35 (Section 7.1). We then

compute the Hilbert–Poincaré series of gr0Σ(A) · τ̇35 relative to the weight grading
(Section 7.2) and a lower bound for the series of Mmin

0 (Σ) (Section 7.3). This
enables us to prove the desired equality and to compute explicitly the map Λ2(Σ)→
Mmin

0 (Σ) (Section 7.4).

7.1. The inclusion Mmin
0 (Σ) ⊂ gr0Σ(A) · τ̇35. The structure of the proof of this

inclusion is as follows. Sections (a), (b), (c) contain preparatory material for the
definition of a family of polynomials Pij and the proof of its property (Auxij) in
Section (d). Section (e) contains some auxiliary results which enable us to prove in
Section (f) that Pij satisfies a property (Condij). This implies the desired inclusion
(Section (g)).

(a) Divisibility of polynomials. For odd i > 3, we defined a polynomial λi ∈
C[A, B, A′, B′]as (see (5.4)). One has (λ3)|B′=0 = 3A′B(A′ + 2A + B), and for
any odd i > 3, (λi)|B′=0 = (A + A′ + B)i − (A + A′)i − (A + B)i + Ai. This
polynomial vanishes under the substitutions A′ = 0 and B = 0, and also (as i is
odd) under A′ = −2A − B. It follows that for any odd i > 3, (λ3)|B′=0 divides
(λi)|B′=0 in C[A, B, A′]. Degree considerations also imply that the polynomial
(λi)|B′=0/(λ3)|B′=0 of C[A, B, A′] is even, i.e., invariant under (A, B, A′) 7→
(−A, −B, −A′).

(b) Decomposition of algebras. Set σ := A2 + AB + B2, p := AB; these are
elements of C[A, B]. Then the subalgebra of C[A, B] consisting of the elements
invariant under (A, B) 7→ (−A, −B) and (A, B) 7→ (B, A) equals C[σ, p].

Let π := p2σ + p3. Then p is integral over C[σ, π], with minimal polynomial
X3+σX2−π. It follows that C[σ, p] is a free module over its subring C[σ, π], with

C[σ, p] = C[σ, π]⊕ C[σ, π] · p⊕ C[σ, π] · p2. (7.1)

Now, we have

(σ̃2)|A′=B′=0 = 2(A2 + (A+B)2 +B2), (σ̃6)|A′=B′=0 = 2(A6 + (A+B)6 +B6),

therefore
(σ̃2)|A′=B′=0 = 4σ, (σ̃6)|A′=B′=0 = 6π + 4σ3, (7.2)

and hence
C[(σ̃2)|A′=B′=0, (σ̃6)|A′=B′=0] = C[σ, π] ⊂ C[σ, p].
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(c) Decomposition of generating series of polynomials. Let t be a formal variable,
then one computes

∑

odd i>3

(λi)|B′=0t
i

=
Num(A, B, A′, t)

(1−((A+B+A′)t)2)(1−((A+A′)t)2)(1−((A+B)t)2)(1−(At)2)
, (7.3)

where Num(A, B, A′, t) ∈ C[A, B, A′, t]. One checks that Num(A, B, A′, t) is

divisible by λ3(A, B, A
′, 0) and one sets Num1(A, B, A

′, t) :=
Num(A, B, A′, t)

λ3(A, B, A′, 0)
.

One computes

Num1(A, B, A
′, t) =

1

3
t3(3− (2A2 +B2 +A′2 + 2AB +BA′ + 2AA′)t2

−A(A3 + 2A2B +AB2 + 2A2A′ +AA′2 + 3ABA′ +B2A′ +BA′2)t4),

so

∑

odd i>3

(λi)|B′=0

(λ3)|B′=0
· ti

=
Num1(A, B, A

′, t)

(1 − ((A+B +A′)t)2)(1− ((A +A′)t)2)(1 − ((A+B)t)2)(1− (At)2)
,

which upon specialization A′ = 0 and symmetrization in (A, B) gives

∑

odd i>3

((
(λi)|B′=0

(λ3)|B′=0

)

A′=0

+ (A↔ B)

)

· ti

=
Num2(A, B, t)

(1− ((A +B)t)2)2(1− (At)2)2(1− (Bt)2)2
,

where Num2(A, B, t) := Num1(A, B, 0, t)(1 − (Bt)2)2 + (A↔ B).
Set

D(σ, π, t) := (1− 2σt2 + σ2t4 − πt6)2, (7.4)

then

(1− ((A+B)t)2)2(1− (At)2)2(1− (Bt)2)2 = D(σ, π, t),

so the left-hand side belongs to C[σ, π][t] ⊂ C[A, B][t] (and even to 1+ tC[σ, π][t]).
It follows from (a) that for odd i > 3, symA,B((λi)|B′=0/(λ3)|B′=0)|A′=0 belongs
to C[σ, p]. It follows that Num2(A, B, t) belongs to C[σ, p]. The decomposition of
Num2(A, B, t) along (7.1) can be computed as follows:

Num2(A, B, t) = X(σ, π, t) + Y (σ, π, t) · p+ 0 · p2,

where

X(σ, π, t) := 2t3 − 3σt5 + (4/3)σ2t7 + (2π − (1/3)σ3)t9 − (1/3)πσt11, (7.5)

Y (σ, π, t) := (5/3)t5 − 2σt7 + (1/3)σ2t9 + (1/3)πt11. (7.6)
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It follows that the decomposition of the polynomials symA,B

(
(λi)|B′=0

(λ3)|B′=0

)

|A′=0 of

C[σ, p] according to (7.1) can be derived from the identity

∑

odd i>3

((
(λi)|B′=0

(λ3)|B′=0

)

A′=0

+(A↔ B)

)

·ti =
X(σ, π, t)

D(σ, π, t)
+
Y (σ, π, t)

D(σ, π, t)
·p+0·p2, (7.7)

where X(σ, π, t), Y (σ, π, t), D(σ, π, t) are given by (7.5), (7.6), (7.4).
If i > 3 is odd, then σ̃i(A, B, 0, 0) = 0. Define σ̃lin

i (A, B, A′, B′) to be the part
of σ̃i(A, B, A

′, B′) which is linear in A′, B′, so

σ̃lin
i (A, B, A′, B′) =

∂σ̃i
∂A′

(A, B, 0, 0) ·A′ +
∂σ̃i
∂B′

(A, B, 0, 0) ·B′. (7.8)

In Section 6.4, we introduced elements Pi3, Pi5 of A ⊂ C[A, B, A′, B′] satisfying
identity (6.2). One has σ̃i(A, B, A

′, B′) = Pi3(A, B, A
′, B′)σ̃3(A, B, A

′, B′) +
Pi5(A, B, A

′, B′)σ̃5(A, B, A
′, B′), so

σ̃lin
i (A, B, A′, B′) = Pi3(A, B, 0, 0)σ̃

lin
3 (A, B, A′, B′)

+ Pi5(A, B, 0, 0)σ̃
lin
5 (A, B, A′, B′), (Eqi)

One computes

σ̃lin
i (A, B, A′, B′) = i

(
(A+B)i−1 −Ai−1

)
·A′ + i

(
(A+B)i−1 −Bi−1

)
·B′.

The combination
∑

odd i>3 t
i · (Eqi) yields

tA′
( 1 + (t(A +B))2

(1 − (t(A+B))2)2
−

1 + (tA)2

(1− (tA)2)2
)
+ ((A, A′)↔ (B, B′))

= A′
(
3
(
(A+B)2 −A2

)
P3(A, B, t) + 5

(
(A+B)4 −A4

)
P5(A, B, t)

)

+ ((A, A′)↔ (B, B′)),

where

P3(A, B, t) :=
∑

odd i>3

Pi3(A, B, 0, 0)t
i, P5(A, B, t) :=

∑

odd i>3

Pi5(A, B, 0, 0)t
i.

Taking coefficients of A′ and B′ in this equation, we obtain the following system

3
(
(A+B)2 −A2

)
P3(A, B, t) + 5

(
(A+B)4 −A4

)
P5(A, B, t)

= t

(
1 + (t(A +B))2

(1 − (t(A+B))2)2
−

1 + (tA)2

(1− (tA)2)2

)

,

3
(
(A+B)2 −B2

)
P3(A, B, t) + 5

(
(A+B)4 −B4

)
P5(A, B, t)

= t

(
1 + (t(A +B))2

(1− (t(A+B))2)2
−

1 + (tB)2

(1− (tB)2)2

)

,
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leading to

15AB(A2 −B2)(2A2 + 5AB + 2B2)P5(A, B, t)

= 3(A2 −B2)t
1 + (t(A+B))2

(1− (t(A+B))2)2
+ 3(B2 − (A+B)2)t

1 + (tA)2

(1− (tA)2)2

+ 3((A+B)2 −A2)t
1 + (tB)2

(1− (tB)2)2
,

which gives, after computation,

P5(A, B, t) =
t5

5

5− 6σt2 + σ2t4 + πt6

(1− 2σt2 + σ2t4 − πt6)2
=

3

5

Y (σ, π, t)

D(σ, π, t)
,

and therefore
∑

odd i>3

Pi5(A, B, 0, 0)t
i =

3

5

Y (σ, π, t)

D(σ, π, t)
. (7.9)

(d) A family (Pij)i,j of polynomials and their properties (Auxij). Let x2, x6 be
free commuting variables of weight degrees 2, 6. If i, j > 3 are odd integers, define
the polynomial Pij(x2, x6) of C[x2, x6] by

Pij(x2, x6) :=
3

10

(
X

D

(
σ(x2, x6), π(x2, x6), t

)Y

D

(
σ(x2, x6), π(x2, x6), u

)

−
Y

D

(
σ(x2, x6), π(x2, x6), t

)X

D

(
σ(x2, x6), π(x2, x6), u

) ∣
∣ tiuj

)

, (7.10)

where

σ(x2, x6) :=
1

4
x2, π(x2, x6) :=

1

6
x6 −

1

96
x3
2, (7.11)

and where (. . . | tiuj) means “coefficient of tiuj in . . .”.
We have

Pij((σ̃2)|A′=B′=0, (σ̃6)|A′=B′=0) = Pij(4σ, 6π + 4σ3)

by (7.2). Using (σ(4σ, 6π + 4σ3), π(4σ, 6π + 4σ3)) = (σ, π), and separating vari-
ables, one gets

Pij(4σ, 3π + σ3)

=
3

10

((
X

D
(σ, π, t)

∣
∣ ti

)(
Y

D
(σ, π, t)

∣
∣ tj

)

−

(
Y

D
(σ, π, t)

∣
∣ ti

)(
X

D
(σ, π, t)

∣
∣ tj

))

,

which is equal to

3

10

(
Y

D
(σ, π, t)

∣
∣ tj

)(
X

D
(σ, π, t) + p

Y

D
(σ, π, t)

∣
∣ ti

)

−
3

10

(
Y

D
(σ, π, t)

∣
∣ ti

)(
X

D
(σ, π, t) + p

Y

D
(σ, π, t)

∣
∣ tj

)

,

which by (7.7) and (7.9) is equal to

−
1

2

(

(Pi5)|A′=B′=0

((
(λj)|B′=0

(λ3)|B′=0

)

A′=0

+ (A↔ B)

)

− (i↔ j)

)

.
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All this implies:

Lemma 7.1. The polynomial Pij(x2, x6) defined by (7.10) satisfies

Pij((σ̃2)|A′=B′=0, (σ̃6)|A′=B′=0)

= −
1

2

(

(Pi5)|A′=B′=0

((
(λj)|B′=0

(λ3)|B′=0

)

A′=0

+ (A↔ B)

)

− (i↔ j)

)

. (Auxij)

(e) Characterization of images of linear maps between spaces of polynomials.
Set

C[A, B, A′, B′]as×as := {P ∈ C[A, B, A′, B′] : P is antisymmetric

under both exchanges (A, B)↔ (A′, B′) and (A, A′)↔ (B, B′).}

Let r : C[A, B, A′, B′]as×as → C[A, B, A′] be the linear map given by P 7→
P |B′=0.

Lemma 7.2. Let Π be an element of C[A, B, A′]. Then Π belongs to im(r) if and
only if :

(1) the polynomial Π(0, B, A′) is symmetric in (B, A′);
(2) the polynomial Π(A, 0, A′) is antisymmetric in (A, A′);
(3) the polynomial Π(A, B, 0) is antisymmetric in (A, B).

Proof. Let Π belong to im(r). Then Π = r(F ) for some F ∈ C[A, B, A′, B′]as×as.
Then

Π(0, B, A′) = F (0, B, A′, 0) = −F (A′, 0, 0, B) = F (0, A′, B, 0) = Π(0, A′, B),

so Π satisfies (1). One proves in the same way that Π satisfies (2) and (3).
Let Π be an element of C[A, B, A′] satisfying (1), (2) and (3). Set

F (A, B, A′, B′) := Π(A, B, A′)−Π(A′, B′, A)−Π(B, A, B′) + Π(B′, A′, B)

+ Π(A′, 0, A)−Π(B′, 0, B) + Π(B, A, 0)−Π(B′, A′, 0)−Π(0, A′, B)

+ Π(0, B′, A) + Π(0, 0, B)−Π(0, 0, A)−Π(0, 0, B′) + Π(0, 0, A′).

F (A, B, A′, B′) is the sum of fourteen terms, which we denote T1, . . . , T14. Then
T1+ · · ·+T4 and T11+ · · ·+T14 are signed averages over the group S2×S2, therefore
they belong to C[A, B, A′, B′]as×as. The fact that Π satisfies (2) (resp., (3), (1))
implies that T5 + T6 (resp., T7 + T8, T9 + T10) belongs to C[A, B, A′, B′]as×as. It
follows that F (A, B, A′, B′) belongs to C[A, B, A′, B′]as×as.

The image of F by r is

r(F )(A, B, A′) = F (A, B, A′, 0) = Π(A, B, A′)−Π(0, A′, 0)−Π(0, 0, 0)+Π(0, 0, A′).

Since Π satisfies (1), Π(0, A′, 0) = Π(0, 0, A′) and since it satisfies (2), Π(0, 0, 0) =
0. Therefore r(F ) = Π. �

Lemma 7.3. Let Π be an element of C[A, B, A′] and P be an element of C[x2, x6].
The following conditions on (Π, P) are equivalent :

(a) (Π, P) satisfies the following three conditions :
(a1) Π(0, B, A′) = Π(0, A′, B);
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(a2) Π(A, B, 0) + Π(B, A, 0) = Π(A, 0, B) + Π(B, 0, A);
(a3) P((σ̃2)|A′=B′=0, (σ̃6)|A′=B′=0) =

1
2 (Π(A, B, 0)+Π(B, A, 0)) (equality

in C[A, B]).
(b) there exists an X ∈ C[A, B, A′, B′]as×as such that (P(σ̃2, σ̃6)+X)|B′=0 =

Π.

Proof. Condition (b) is equivalent to the statement“Π − P(σ̃2, σ̃6)|B′=0 belongs
to im(r)”. According to Lemma 7.2, this is equivalent to the condition that
Π − P(σ̃2, σ̃6)|B′=0 satisfies conditions (1), (2) and (3) from that lemma. As
(σ̃2)|A=B′=0 and (σ̃6)|A=B′=0 are symmetric in (A′, B), so is P(σ̃2, σ̃6)|A=B′=0;
the condition that Π − P(σ̃2, σ̃6)|B′=0 satisfies (1) is therefore equivalent to (a1).
Besides, the condition that Π − P(σ̃2, σ̃6)|B′=0 satisfies (2) is equivalent to the
antisymmetry in (A, A′) of the polynomial

Π(A, 0, A′)−P(2(A2 +A′2 + (A+A′)2), 2(A6 +A′6 + (A+A′)6)),

in other words

P(2(A2+A′2+(A+A′)2), 2(A6+A′6+(A+A′)6)) =
1

2
(Π(A, 0, A′)+Π(A′, 0, A)).

(7.12)
In the same way, the condition that Π − P(σ̃2, σ̃6)|B′=0 satisfies (3) is equivalent
to the antisymmetry in (A, B) of the polynomial

Π(A, B, 0)−P(2(A2 +B2 + (A +B)2), 2(A6 +B6 + (A+B)6)),

in other words

P(2(A2 +B2 + (A+B)2), 2(A6 +B6 + (A+B)6)) =
1

2
(Π(A, B, 0)+Π(B, A, 0)).

(7.13)
The conjunction of (7.12) and (7.13) is equivalent to the conjunction of (a2) and
(a3). So we have proved the chain of equivalences (b) ⇔ ((1), (2) and (3)) ⇔
((a1), (7.12) and (7.13))⇔ ((a1), (a2) and (a3)). �

(f) The polynomials Pij satisfy property (Condij).

Lemma 7.4. Let U, V belong to C[A, B, A′, B′]as×as. Then there exists X in
C[A, B, A′, B′]as×as such that (U − σ̃5 ·X)|B′=0 = (V + σ̃3 ·X)|B′=0 = 0 and

σ̃3 · U + σ̃5 · V ≡ 0 mod I ·ABA′B′ · C[A, B, A′, B′]as×as.

Proof. If (U, V ) satisfies the first condition, then U ≡ σ̃5 ·X and V ≡ −σ̃3 ·X mod
ABA′B′ ·C[A, B, A′, B′]as×as. Let U ′, V ′ in ABA′B′ ·C[A, B, A′, B′]as×as be such
that U − σ̃5 · X = U ′ and V + σ̃3 · X = V ′, then σ̃3U + σ̃5V = σ̃3(σ̃5X + U ′) +
σ̃5(−σ̃3X+V ′) = σ̃3U

′+ σ̃5V
′ ≡ 0 mod I ·ABA′B′ ·C[A, B, A′, B′]as×as, so (U, V )

satisfies the second condition.
Assume that (U, V ) satisfies the second condition. Since

I · C[A, B, A′, B′]as×as = σ̃3 · C[A, B, A
′, B′]as×as + σ̃5 · C[A, B, A

′, B′]as×as,

there exist U ′, V ′ in ABA′B′ · C[A, B, A′, B′]as×as such that σ̃3 · U + σ̃5 · V =
σ̃3 · U

′ + σ̃5 · V
′, which one rewrites as follows σ̃3 · (U − U

′) + σ̃5 · (V − V
′) = 0

(equality in C[A, B, A′, B′]).
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The ring C[A, B, A′, B′] is an UFD in which σ̃3 and σ̃5 have no common factor.
This last equation then implies the existence of X in C[A, B, A′, B′] such that
U −U ′ = σ̃5 ·X , V −V ′ = −σ̃3 ·X . Taking into account symmetries, one finds that
X in fact belongs to C[A, B, A′, B′]as×as. Then (U − σ̃5 ·X)|B′=0 = U ′|B′=0 = 0
and (V + σ̃3 ·X)|B′=0 = −V ′|B′=0 = 0. This implies that (U, V ) satisfies the first
condition. �

For each odd i > 3, λi belongs to C[A, B, A′, B′]as×as (see (5.4)), i.e., is anti-
symmetric under (A, B)↔ (A′, B′) and (A, A′)↔ (B, B′), while σ̃i is symmetric
under the same transformations. Equation (5.5) then implies that for any odd
i, j > 3, τij belongs to C[A, B, A′, B′]as×as. Since this element also belongs to
M = ABA′B′ · C[A, B, A′, B′]as, one obtains

τij ∈ ABA
′B′ · C[A, B, A′, B′]as×as.

Since A is contained in the subalgebra of C[A, B, A′, B′] consisting of invariants
under the transformations (A, B) ↔ (A′, B′) and (A, A′) ↔ (B, B′), the action
of A on M = ABA′B′ · C[A, B, A′, B′]as restricts to an action on M = ABA′B′ ·
C[A, B, A′, B′]as×as.

Lemma 7.5. Let i, j be integers > 3 and let P(x2, x6) be an element of C[x2, x6].
Then P(x2, x6) satisfies (Auxij) if and only if it satisfies

τij = P(σ̃2, σ̃6) · τ35 mod I ·ABA′B′ · C[A, B, A′, B′]as×as (Condij)

in ABA′B′ · C[A, B, A′, B′]as×as.

Proof. Let Πij := (Pj5)|B′=0 ·
(λi)B′=0

(λ3)B′=0
− (Pi5)|B′=0 ·

(λj)B′=0

(λ3)B′=0
; this is an element of

C[A, B, A′]. The polynomials (Pi5)|B′=0 and (λi)B′=0

(λ3)B′=0
of C[A, B, A′] are invariant

under the symmetry (A, B, A′)↔ (A, A′, B). It follows that Πij is invariant under
the same symmetry, so Πij(A, B, A

′) = Πij(A, A
′, B). Substituting A = 0, one

derives Πij(0, B, A
′) = Πij(0, A

′, B), so Πij satisfies condition (a1) in Lemma
7.3. Substituting (A, B, 0) and then (A, 0, B) for (A, B, A′), and summing up
the resulting identities, one obtains Πij(A, B, 0) + Πij(B, A, 0) = Πij(A, 0, B) +
Πij(B, 0, A), so Πij satisfies condition (a2) in Lemma 7.3.

One checks that P(x2, x6) satisfies (Auxij) if and only if (Πij , P) satisfies con-
dition (a3) in Lemma 7.3; as conditions (a1) and (a2) are automatically satisfied,
this is equivalent to (Πij , P) satisfying condition (a) in Lemma 7.3. Taking into
account Lemma 7.3, this is equivalent to (Πij , P) satisfying condition (b) in Lemma
7.3, i.e., taking into account the definition of Πij , this is equivalent to the existence
of X in C[A, B, A′, B′]as×as such that

(P(σ̃2, σ̃6) +X)|B′=0 = (Pj5)|B′=0 ·
(λi)B′=0

(λ3)B′=0
− (Pi5)|B′=0 ·

(λj)B′=0

(λ3)B′=0
(7.14)

(we mean equality in C[A, B, A′]). Since (λ3)B′=0 = (σ̃3)|B′=0, since this element
of C[A, B, A′] is nonzero and since C[A, B, A′] is a domain, (7.14) is equivalent to

(P(σ̃2, σ̃6) · λ3 +X · σ̃3 − Pj5 · λi + Pi5 · λj)|B′=0 = 0 (7.15)
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Since (τij)|B′=0 = (τ35)|B′=0 = 0, we have (τij − P(σ̃2, σ̃6) · τ35)|B′=0 = 0. The
equality

τij −P(σ̃2, σ̃6) · τ35 = σ̃3 · (Pi3λj − Pj3λi −P(σ̃2, σ̃6)λ5 −Xσ̃5)

+ σ̃5 · (Pi5λj − Pj5λi +P(σ̃2, σ̃6)λ3 +Xσ̃3)

then implies

(σ̃3)|B′=0 · (Pi3λj − Pj3λi −P(σ̃2, σ̃6)λ5 −Xσ̃5)|B′=0

+ (σ̃5)|B′=0 · (Pi5λj − Pj5λi +P(σ̃2, σ̃6)λ3 +Xσ̃3)|B′=0 = 0.

Condition (7.15) implies the vanishing of the second part of the left-hand side of
this identity, which, taking into account the non-vanishing of (σ̃3)|B′=0 and the fact
that C[A, B, A′] is a domain, implies the following identity

(Pi3λj − Pj3λi −P(σ̃2, σ̃6)λ5 −Xσ̃5)|B′=0 = 0. (7.16)

It follows that there exists an X in C[A, B, A′, B′]as×as satisfying (7.15) if and only
if there exists X in C[A, B, A′, B′]as×as satisfying the conjunction of (7.15) and
(7.16). This existence condition is exactly the first side of the equivalence of Lemma
7.4, with U = Pi3λj − Pj3λi −P(σ̃2, σ̃6)λ5, V = Pi5λj − Pj5λi +P(σ̃2, σ̃6)λ3. By
Lemma 7.4, the existence of an X in C[A, B, A′, B′]as×as satisfying the conjunction
of (7.15) and (7.16) is equivalent to

σ̃3 · (Pi3λj − Pj3λi −P(σ̃2, σ̃6)λ5) + σ̃5 · (Pi5λj − Pj5λi +P(σ̃2, σ̃6)λ3) ≡ 0

mod I · ABA′B′ · C[A, B, A′, B′]as×as,

i.e.,

τij −P(σ̃2, σ̃6)τ35 ≡ 0 mod I ·ABA′B′ · C[A, B, A′, B′]as×as,

which is (Condij). �

Combining Lemma 7.1 and Lemma 7.5, we obtain:

Proposition 7.6. The poynomial Pij given by (7.10) satisfies condition (Condij)
from Lemma 7.5.

(g) The inclusion Mmin
0 (Σ) ⊂ gr0Σ(A) · τ̇35. For any odd i, j > 3, Proposition 7.6

implies the relation

τij ≡ Pij(σ̃2, σ̃6) · τ35 mod I ·M

in M , where · is the action of A on M . The image of this relation in gr0Σ(M) =
M/I ·M is

τ̇ij = Pij(σ̇2, σ̇6) · τ̇35, (7.17)

where m 7→ ṁ is the projection map M → M/I ·M = gr0Σ(M) and · is the action
of gr0Σ(A) on gr0Σ(M). As Mmin

0 (Σ) is the subspace of gr0Σ(M) spanned by all the
τ̇ij for odd i, j > 3, we derive:

Proposition 7.7. Mmin
0 (Σ) is contained in gr0Σ(A) · τ̇35.
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7.2. Computation of the Hilbert–Poincaré series of gr0Σ(A)· τ̇35. Recall that
gr0Σ(M) is a module over the ring gr0Σ(A), containing a vector τ̇35. Recall also that
gr0Σ(A) contains the images σ̇2, σ̇4 of σ̃2, σ̃4 under A→ A/I = gr0Σ(A).

Lemma 7.8. The element σ̇4 −
1
4 (σ̇2)

2 of gr0Σ(A) annihilates the vector τ̇35:
(

σ̇4 −
1

4
(σ̇2)

2
)

· τ̇35 = 0

(equality in gr0Σ(M)).

Proof. Recall that the σ̃i, as well as λ3, λ5 all belong to C[A, B, A′, B′]. One
checks that

(σ̃3)|B′=0 = (λ3)|B′=0, (σ̃5)|B′=0 = (λ5)|B′=0. (7.18)

Set P := σ̃4 −
1
4 (σ̃2)

2 and Q := 3(A2B′2 − A′2B2) ∈ C[A, B, A′, B′]as. One has

P = −3(AB′ −A′B)2, so
P |B′=0 = Q|B′=0. (7.19)

Then (Pλ5)|B′=0 = (P σ̃5)|B′=0 = (Qσ̃5)|B′=0, using the second part of (7.18)
and then (7.19). Since both Pλ5 and Qσ̃5 are anti-invariant under the exchanges
(A, A′) ↔ (B, B′) and (A, B) ↔ (A′, B′), it follows that Pλ5 = Qσ̃5 modulo
ABA′B′ · C[A, B, A′, B′]as. In the same way, one proves (using the first part of
(7.18)) that Pλ3 = Qσ̃3 modulo ABA′B′ · C[A, B, A′, B′]as.

As τ35 = σ̃3λ5− σ̃5λ3, one has P · τ35 = P · (σ̃3λ5− σ̃5λ3) = σ̃3 ·Pλ5− σ̃5 ·Pλ3 ≡
σ̃3 ·Qσ5 − σ̃5 · Qσ3 ≡ 0 modulo

∑

i=3,5 σ̃i · ABA
′B′ · C[A, B, A′, B′]as. Therefore

P ·τ35 ≡ 0 inM = ABA′B′ ·C[A, B, A′, B′]as modulo I·M =
∑

odd i>3 σ̃i ·ABA
′B′ ·

C[A, B, A′, B′]as. So P · τ̇35 = 0 in gr0Σ(M), as claimed. �

Define gr0Σ(A) as the quotient of gr0Σ(A) by the ideal generated by σ̇4 −
1
4 (σ̇2)

2.
Taking into account Proposition 6.3, this ring is the commutative ring freely gen-
erated by the images σ2 and σ6 of σ̇2 and σ̇6 under the projection map gr0Σ(A) →

gr0Σ(A). Therefore:

Lemma 7.9. There is a unique isomorphism of graded rings C[x2, x6] ≃ gr0Σ(A),
given by x2 7→ σ̇2, x6 7→ σ̇6.

Lemma 7.8 implies that the ideal generated by σ̇4−
1
4 (σ̇2)

2 annihilates the cyclic

submodule gr0Σ(A) · τ̇35 of gr0Σ(M) generated by τ̇35, and therefore that gr0Σ(A) · τ̇35
has a structure of module over gr0Σ(A), of which the gr0Σ(A)-module gr0Σ(A) · τ̇35 is

the pullback under the projection gr0Σ(A)→ gr0Σ(A).

Lemma 7.10. The morphism C[x2, x6] → C[A, A′], x2 7→ (σ̃2)|B=B′=0, x6 7→
(σ̃6)|B=B′=0, is injective.

Proof. One checks that the pair (A2 + AA′ + A′2, AA′) is algebraically indepen-
dent in C[A, A′], and that if u, v are free commuting variables, then the pair
(4u, 2(2u3 +3uv2 +3v3)) is algebraically independent in C[u, v]. So the morphism
C[x2, x6]→ C[u, v], x2 7→ 4u, x6 7→ 2(2u3 +3uv2 +3v3) is injective, as well as the
morphism C[u, v] → C[A, A′], u 7→ A2 + AA′ + A′2, v 7→ AA′. As (σ̃2)|B=B′=0 =
2(A2 +A′2 +(A+A′)2) and (σ̃6)|B=B′=0 = 2(A6 +A′6 +(A+A′)6), the morphism
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C[x2, x6] → C[A, A′] is the composition C[x2, x6] → C[u, v] → C[A, A′], and is
therefore injective. �

Composing the isomorphism C[x2, x6] ≃ gr0Σ(A) with the action map gr0Σ(A)→

gr0Σ(A) · τ̇35 of gr0Σ(A) on gr0Σ(A) · τ̇35, one obtains a linear map C[x2, x6]→ gr0Σ(A) ·
τ̇35.

Proposition 7.11. This linear map C[x2, x6] → gr0Σ(A) · τ̇35 induces an isomor-
phism of graded vector spaces C[x2, x6]{8} ≃ gr0Σ(A) · τ̇35, where the right-hand side
is graded by the weight degree and in the left-hand side {8} means denotes a degree
shift by 8.

Proof. As the element τ̇35 ∈ gr0Σ(A) · τ̇35 has degree 8, the map C[x2, x6]→ gr0Σ(A) ·
τ̇35 induced by the action on τ̇35 shifts the degrees by 8. Since the action of gr0Σ(A)

on τ̇35 factors through gr0Σ(A), we have gr0Σ(A) · τ̇35 = gr0Σ(A) · τ̇35. Therefore the
map C[x2, x6]→ gr0Σ(A) · τ̇35 is injective.

Multiplying by AA′BB′ the composite map

C[A, A′, B, B′]as →֒ C[A, A′, B, B′]→ C[A, A′],

where the second map is the specialization for B = B′ = 0, we obtain a map

M = AA′BB′ · C[A, A′, B, B′]as → AA′BB′ · C[A, A′]. (7.20)

For each odd integer i > 3, we have (σ̃i)|B=B′=0 = 0. It follows that the image of
∑

odd i>3 σ̃i ·M = I ·M under (7.20) is zero. It follows that there is a unique map

gr0Σ(M)→ AA′BB′ · C[A, A′],

through which (7.20) factors.
If k is an integer > 2, then this map intertwines the action of σ̃k on gr0Σ(M) with

the product by (σ̃k)|B=B′=0 on ABA′B′ · C[A, A′]. It follows that the map

C[x2, x6]→ AA′BB′C[A, A′]

obtained as C[x2, x6]→ gr0Σ(A) · τ̇35 →֒ gr0Σ(M)→ AA′BB′C[A, A′] is given by

P (x2, x6) 7→ P ((σ̃2)|B=B′=0, (σ̃6)|B=B′=0)

× im(τ̇35 ∈ gr0Σ(M)→ AA′BB′ · C[A, A′]). (7.21)

One computes

im(τ̇35 ∈ gr0Σ(M)→ AA′BB′ ·C[A, A′]) = 30AA′BB′(A2−A′2)(2A2+5AA′+2A′2).

If P ∈ C[x2, x6] is in ker(C[x2, x6] → gr0Σ(M)), then the element (7.21) is zero.
As im(τ̇35 ∈ gr0Σ(M)→ AA′BB′ · C[A, A′]) is nonzero and as C[A, A′] has no zero
divisors,

P ((σ̃2)|B=B′=0, (σ̃6)|B=B′=0) = 0.

Then Lemma 7.10 implies that P = 0. This shows that the linear map C[x2, x6]→
AA′BB′C[A, A′] is injective. As this linear map decomposes as C[x2, x6] →
gr0Σ(A) · τ̇35 → AA′BB′C[A, A′], its injectivity implies that of C[x2, x6]→ A. �
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Proposition 7.11 enables one to compute the Hilbert series of gr0Σ(A) · τ̇35 ≃
C[x2, x6]{8} by Pgr0

Σ
(A)·τ̇35(t) = t8 · PC[x2,x6](t), therefore

Pgr0
Σ
(A)·τ̇35(t) =

t8

(1 − t2)(1− t6)
. (7.22)

7.3. A lower bound for the Hilbert–Poincaré series of Mmin
0 (Σ). In the

proof of Proposition 7.11, we constructed a linear map

gr0Σ(M)→ AA′BB′ · C[A, A′],

such that the compositionABA′B′·C[A, B, A′, B′]as ≃M →M/I·M ≃ gr0Σ(M)→
AA′BB′ ·C[A, A′] is ABA′B′ · P 7→ ABA′B′ · P |B=B′=0. Recall that gr

0
Σ(M) con-

tains elements τ̇ij defined for any odd i, j > 3 (see introduction of Section 7), and
define τ ij as their images under gr0Σ(M)→ AA′BB′ · C[A, A′].

As τ̇ij is itself the image of τij ∈M under M → gr0Σ(M), τ ij is the image of τij
(defined in (5.5)) under the map ABA′B′ ·C[A, B, A′, B′]as → AA′BB′ ·C[A, A′].

If i is odd, then σ̃i(A, 0, A
′, 0) = λi(A, 0, A

′, 0) = 0, therefore

σ̃i(A, B, A
′, B′) ≡

∂σ̃i
∂B

(A, 0, A′, 0) ·B +
∂σ̃i
∂B′

(A, 0, A′, 0) ·B′

and

λi(A, B, A
′, B′) ≡

∂λi
∂B

(A, 0, A′, 0) ·B +
∂λi
∂B′

(A, 0, A′, 0) · B′ mod (B, B′)2

(relations in C[A, B, A′, B′]), where (B, B′) is the ideal of C[A, B, A′, B′] gener-
ated by B, B′. Plugging this into (5.5), one obtains an expression of the class of

τij in C[A, B, A′, B′]/(B, B′)3 in terms of ∂σ̃i

∂B (A, 0, A′, 0), . . . , ∂λi

∂B′
(A, 0, A′, 0).

One checks that

∂λi
∂B

(A, 0, A′, 0) =
∂σ̃i
∂B

(A, 0, A′, 0),
∂λi
∂B′

(A, 0, A′, 0) = −
∂σ̃i
∂B′

(A, 0, A′, 0),

therefore τij ≡ −2BB
′(∂σ̃i

∂B
∂σ̃j

∂B′
−

∂σ̃j

∂B
∂σ̃i

∂B′
)(A, 0, A′, 0) mod (B, B′)3. One also

computes

∂σ̃i
∂B

(A, 0, A′, 0) = i((A+A′)i−1−Ai−1),
∂σ̃i
∂B′

(A, 0, A′, 0) = i((A+A′)i−1−A′i−1).

Together with the previous formula, this implies

τ ij = 2BB′ · Pij(A, A
′) ∈ ABA′B′ · C[A, A′],

where

Pij(A, A
′) := ij(A′j−1 −Aj−1)(A+A′)i−1 + ij(Ai−1 −A′i−1)(A+A′)j−1

− ijAi−1A′j−1 + ijAj−1A′i−1 ∈ AA′ · C[A, A′],

Recall that the subspace Mmin
0 (Σ) of gr0Σ(M) is defined as the linear span of all

τ̇ij , for odd i, j > 3. Define Mmin
0 (Σ) ⊂ AA′BB′ · C[A, A′] to be the image of this

subspace under gr0Σ(M)→ AA′BB′ · C[A, A′], so

Mmin
0 (Σ) = im(Mmin

0 (Σ) ⊂ gr0Σ(M)→ AA′BB′ · C[A, A′]).
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ThenMmin
0 (Σ) is the linear span of all τ ij , for odd i, j > 3. Set A := {(aij) : i, j > 3

are odd, aij ∈ C, aij + aji = 0 for any i, j}. Taking into account the identity

τ ij = −τ ji, there is a surjective linear map A →Mmin
0 (Σ), given by

(aij)odd i,j>3 7→
∑

odd i,j>3

aijτ ij .

Denote by R the kernel of this map; it can be identified with the vector space

of relations between the polynomials τ ij . The vector spaces A and Mmin
0 (Σ) are

graded: one has A =
⊕

n>0An and Mmin
0 (Σ) =

⊕

n>0 M
min
0 (Σ)n, where An :=

{(aij) : i, j > 3 are odd, aij = 0 if i+ j 6= n} and Mmin
0 (Σ)n := Span{τ ij : i, j > 3

are odd and i + j = n}. The linear map A → Mmin
0 (Σ) is then graded, which

implies that R = ker(A → Mmin
0 (Σ)) is a graded vector subspace of A. Therefore

R =
⊕

n>0Rn, where Rn := R ∩An.
Let n be an integer > 0. If n is odd, then An = 0, therefore Rn = 0. Assume

that n is even. Let (aij) belong to An. Its image under the map A → Mmin
0 (Σ) is

equal to

4BB′(A+A′)n−2
(

P (x)− P (1− x)− (1 − x)n−2P
( x

1− x

))

,

where x := A/(A+A′) and P (x) :=
∑

odd i,j>3, i+j=n ijaijx
j−1. The map (aij) 7→

P is an isomorphism between An and {P ∈ C[X ] : P is even, has degree 6 n − 2,
P (0) = 0, and Xn−2P (1/X) = −P (X)}. This isomorphism induces an isomor-
phism between Rn and

Σn :=
{

P ∈ C[X ] : P is even, has degree 6 n− 2, P (0) = 0,

Xn−2P (1/X) = −P (X), and P (X)− P (1−X)− (1−X)n−2P
( X

1−X

)

= 0
}

.

The two last equations in the definition of Σn can be rewritten as follows P+P |S =

P+P |U+P |U2 = 0, where P |γ := (cX+d)n−2P (aX+b
cX+d ) for γ =

(
a b
c d

)

∈ SL2(Z),

and S :=

(
0 −1
1 0

)

, U :=

(
1 −1
1 0

)

.

LetW+
n be the space of polynomials P ∈ C[X ] which are even, of degree 6 n−2,

and satisfy P +P |S = P +P |U +P |U2 = 0. According to [Za], there is an injective
map Sn →W+

n , injective and with image of codimension 1, where Sn is the space of
cusp modular forms for the group SL2(Z). It follows that dim(W+

n ) = dim(Sn)+1.
On the other hand, Σn is the kernel of the linear map W+

n → C, P 7→ P (0).
As W+

n contains the polynomial Xn−2 − 1, the linear map is nonzero. Therefore
dim(Σn) = dim(W+

n ) − 1, which implies that dim(Σn) = dim(Sn) and therefore
dim(Rn) = dim(Sn).

The commutative ring of modular forms under SL2(Z) is known to be freely
generated in degrees 4 and 6; its Hilbert series is therefore 1/((1 − t4)(1 − t6)).
On the other hand, the graded vector space of cusp forms under SL2(Z) is a free
module of rank one over this group, with generator in degree 12. The Hilbert series
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of S :=
⊕

n>0 Sn is therefore PS(t) = t12/((1− t4)(1− t6)), which implies that the

Hilbert series of R =
⊕

n>0Rn is

PR(t) =
t12

(1− t4)(1 − t6)
.

One also computes dim(An) = [n/4] − 1 ([x] meaning the integral part of x);
from where one derives the Hilbert series of A =

⊕

n>0An:

PA(t) =
t8

(1− t2)(1− t4)
.

There is an exact sequence 0→ R→ A →Mmin
0 (Σ)→ 0, therefore

P
Mmin

0 (Σ)
(t) = PA(t)− PR(t) =

t8

(1− t2)(1− t6)
. (7.23)

As Mmin
0 (Σ) is a quotient of Mmin

0 (Σ), we have PMmin
0 (Σ)(t) > P

Mmin
0 (Σ)

(t) (meaning

that the difference of these series has nonnegative coefficients), which given (7.23)
yields

PMmin
0 (Σ)(t) >

t8

(1− t2)(1− t6)
. (7.24)

7.4. Computation of Mmin
0 (Σ). Comparing (7.22) and (7.24), one obtains the

inequality PMmin
0 (Σ)(t) > Pgr0

Σ
(A)·τ̇35(t). Combining this inequality with the opposite

inequality following from the inclusion Mmin
0 (Σ) ⊂ gr0Σ(A)·τ̇35 (see Proposition 7.7),

one obtains the equality

PMmin
0 (Σ)(t) = Pgr0

Σ
(A)·τ̇35(t)

(

=
t8

(1− t2)(1 − t6)

)

and therefore:

Proposition 7.12. The subspaces Mmin
0 (Σ) and gr0Σ(A) · τ̇35 of gr0Σ(M) are equal.

Combining this result with the isomorphism gr0Σ(A) · τ̇35 ≃ C[x2, x6]{8} (Propo-
sition 7.11), we obtain a isomorphism of graded vector spaces

Mmin
0 (Σ) ≃ C[x2, x6]{8}. (7.25)

The map {, } : Λ2(Σ) → Mmin
0 (Σ) is given by {σi, σj} = (class of c(σi, σj)) for

any odd i, j > 3. Taking into account the relation c(σi, σj) = −2τij (Section 5.3),
we obtain {σi, σj} = −2τ̇ij . Then (7.17) yields {σi, σj} = −2Pij(σ̇2, σ̇6)τ̇35. It
follows that the map

{ , } : Λ2(Σ)→ C[x2, x6]{8}

obtained by composing Λ2(Σ)
{ , }
−−→ Mmin

0 (Σ) with the isomorphism (7.25) is given
by

{σi, σj} = −2Pij(x2, x6) for any odd i, j > 3, (7.26)

where Pij is given by (7.10). Introducing the generating series

σ(t) :=
∑

odd i>3

σi · t
i ∈ Σ[[t]],
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we may rewrite (7.26) as follows

{σ(t), σ(u)}

= −
3

5

(X

D

(
σ(x2, x6), π(x2, x6), t

)Y

D

(
σ(x2, x6), π(x2, x6), u

)
− (t↔ u)

)

,

where X, Y, D, σ(x2, x6), π(x2, x6) are as in (7.5), (7.6), (7.4), and (7.11). Define

d(x2, x6, t) :=
(

1−
x2

4
t2
)2

+
(

−
1

6
x6 +

1

96
(x2)

3
)

t6, (7.27)

then one checks that

t
d

dt

( − 1
3 t

3

d(x2, x6, t)

)

= −
1

2

(X

D

(
σ(x2, x6), π(x2, x6), t

)

+ σ(x2, x6)
Y

D

(
σ(x2, x6), π(x2, x6), t

))

,

t
d

dt

( − 1
5 t

5

d(x2, x6, t)

)

= −
3

5

Y

D

(
σ(x2, x6), π(x2, x6), t

)
.

It follows that if

ξ3(x2, x6, t) := t
d

dt

( 1
3 t

3

d(x2, x6, t)

)

, ξ5(x2, x6, t) := t
d

dt

( 1
5 t

5

d(x2, x6, t)

)

, (7.28)

then

{σ(t), σ(u)} = −2(ξ3(x2, x6, t)ξ5(x2, x6, u)− ξ3(x2, x6, u)ξ5(x2, x6, t)). (7.29)

8. Computation of the Lower Bound Mmin(Σ)

To compute the lower bound Mmin(Σ) as a (weight degree, Σ-degree)-bigraded
vector space, we first construct a surjective morphism C[x2, x6, x3, x5]{8, 2} →
Mmin(Σ) between this space and a polynomial ring with shifted degrees (Section
8.1). We then show that this morphism is injective (Section 8.2), and is therefore an
isomorphism. We then compute the action (Section 8.3) and the filtration (Section
8.4) obtained from the action of S(Σ) on Mmin(Σ) and from the depth filtration of
Mmin(Σ) by transport of structure through this isomorphism. We summarize these
results in Section 8.5.

8.1. A surjective morphism ϕ : C[x2, x6, x3, x5]{8, 2} →Mmin(Σ). By Section
5.4.5, the Σ-graded space grΣ(M) =

⊕

k>0 gr
k
Σ(M) is equipped with an action of

the Σ-graded ring grΣ(A) =
⊕

k>0 gr
k
Σ(A). Then grΣ(A) contains gr0Σ(A) as a

subring, and by Section 5.4.3, it also contains a Σ-graded subring S. By Section
5.4.6, the space gr0Σ(M) contains a vector subspace Mmin

0 (Σ), and the Σ-graded
subspace Mmin(Σ) of grΣ(M) is equal to S · Mmin

0 (Σ). In Proposition 7.12, we
showed that Mmin

0 (Σ) coincides with gr0Σ(A) · τ̇35, where the element τ̇35 ∈ gr0Σ(M)
has been defined in the introduction of Section 7. It follows that

Mmin(Σ) = (S · gr0Σ(A)) · τ̇35, (8.1)

where S · gr0Σ(A) is the subalgebra of grΣ(A) obtained as the image of the product
morphism S⊗ gr0Σ(A)→ grΣ(A).
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Under the isomorphism grΣ(A) ≃ gr0Σ(A)[x3, x5] (Theorem 6.4), the subalgebra
gr0Σ(A) of grΣ(A) is taken to the subalgebra gr0Σ(A) of gr

0
Σ(A)[x3, x5], while the sub-

algebra S of grΣ(A) is taken to a subalgebra of gr0Σ(A)[x3, x5] containing C[x3, x5]
(see Section 6.4). As the product of these two subalgebras of gr0Σ(A)[x3, x5] is equal
to gr0Σ(A)[x3, x5] itself, the product S·gr

0
Σ(A) coincides with grΣ(A). Equation (8.1)

then implies that

Mmin(Σ) = grΣ(A) · τ̇35. (8.2)

Let grΣ(A) be the quotient of the ring grΣ(A) by the principal ideal generated by the
element σ̇4 −

1
4 (σ̇2)

2 ∈ gr0Σ(A) ⊂ grΣ(A). By Lemma 7.8, this element annihilates

τ̇35. Together with (8.2), this implies that the action of grΣ(A) on Mmin(Σ) factors

through grΣ(A) and that

Mmin(Σ) = grΣ(A) · τ̇35. (8.3)

As σ̇4 −
1
4 (σ̇2)

2 belongs to gr0Σ(A), the isomorphism grΣ(A) ≃ gr0Σ(A)[x3, x5] from
Theorem 6.4 induces an isomorphism

grΣ(A) ≃ gr0Σ(A)[x3, x5], (8.4)

where we recall that gr0Σ(A) is the quotient of gr
0
Σ(A) by its ideal generated by σ̇4−

1
4 (σ̇2)

2 (see Section 7.2). Combining the isomorphism (8.4) with the isomorphism

gr0Σ(A) ≃ C[x2, x6] (Lemma 7.9), we obtain an isomorphism

grΣ(A) ≃ C[x2, x6, x3, x5] (8.5)

of (weight degree, Σ-degree)-bigraded rings, where the bidegrees of x2, x6, x3, x5

are respectively (2,0), (6,0), (3,1), (5,1).
The element τ̇35 of Mmin(Σ) has weight degree 8 and Σ-degree 2 (as it belongs

to Mmin
0 (Σ)). Combining the isomorphism (8.4) with the action map of grΣ(A) on

τ̇35 and taking (8.3) into account, we obtain a surjective bigraded linear map

ϕ : C[x2, x6, x3, x5]{8, 2} →Mmin(Σ),

where . . . {8, 2} denotes a bidegree shift by (8, 2). This linear map is compatible
with the structures of modules over both sides of the inverse of isomorphism (8.5).

8.2. Injectivity of ϕ : C[x2, x6, x3, x5]{8, 2} → Mmin(Σ). For each odd i >

3, the element σ̃i of A ⊂ C[A, A′, B, B′] is contained in (B, B′), the ideal of
C[A, A′, B, B′] generated by B, B′. As the ideal I of A is generated by the σ̃i with
odd i > 3, it follows that

I is contained in (B, B′). (8.6)

Recall that M is a vector subspace of ABA′B′ · C[A, B, A′, B′]. It then follows
from (8.6) that for any k > 0, Ik · M is contained in ABA′B′ · (B, B′)k. The
collection of maps Ik ·M →֒ ABA′B′ · (B, B′)k induces quotient maps

grkΣ(M) =
Ik ·M

Ik+1 ·M
→ ABA′B′ ·

(B, B′)k

(B, B′)k+1

≃ ABA′B′ · C[A, B, A′, B′]B-deg+B′-deg=k, (8.7)
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where the index means the linear space of monomials whose sum of partial degrees
in B and B′ equals k. The direct sum of all maps (8.7) is a bigraded linear map

grΣ(M)→ ABA′B′ · C[A, B, A′, B′], (8.8)

where on the right side the weight degree is the total degree and the Σ-degree is
the sum of partial degrees in B and B′.

Similarly, the morphism (A, I) → (C[A, B, A′, B′], (B, B′)) of pairs (a graded
algebra, a graded ideal of this algebra) induces a morphism of bigraded rings
⊕

k>0 I
k/Ik+1 →

⊕

k>0(B, B
′)k/(B, B′)k+1, which can be identified with a mor-

phism

grΣ(A)→ C[A, A′, B, B′] (8.9)

of bigraded rings, where, on the right-hand side, the pair (weight degree, Σ-degree)
is again (total degree, sum of partial degrees in B and B′).

The morphism (8.8) is then compatible with the morphism (8.9) and with the
action of both sides of (8.9) on both sides of (8.8).

The presentation results Lemma 7.9 and Proposition 6.3 imply that there is a

morphism of graded algebras sec : gr0Σ(A) → gr0Σ(A), uniquely defined by (class
of σ̇2) 7→ σ̇2, (class of σ̇6) 7→ σ̇6. Tensoring this morphism with the identity mor-
phism of the polynomial ring C[x3, x5], and composing the resulting morphism with

the isomorphisms grΣ(A) ≃ gr0Σ(A)[x3, x5] (see (8.4)) and grΣ(A) ≃ gr0Σ(A)[x3, x5]

(Theorem 6.4), one obtains a morphism of bigraded algebras grΣ(A) → grΣ(A),

extending sec : gr0Σ(A)→ gr0Σ(A) by (class of σ̇3) 7→ σ̇3, (class of σ̇5) 7→ σ̇5.

Since this morphism is a section of the quotient map grΣ(A) → grΣ(A), the

identity morphism of Mmin(Σ) is compatible with the algebra morphism grΣ(A)→
grΣ(A) and with the module structure of Mmin(Σ) with respect to both sides of
this morphism.

Then there is a sequence of morphisms of bigraded vector spaces

C[x2, x6, x3, x5]{8, 2}
ϕ
։ Mmin(Σ)

id
−→Mmin(Σ) →֒ grΣ(M)

→ ABA′B′C[A, B, A′, B′], (8.10)

compatible with the following sequence of morphisms of algebras, and their module
structures over these algebras

C[x2, x6, x3, x5]
≃
→ grΣ(A)

sec
−−→ grΣ(A)

id
−→ grΣ(A)→ C[A, B, A′, B′]. (8.11)

The resulting composite morphism C[x2, x6, x3, x5]→ C[A, B, A′, B′] is given by

x2 7→ (class of σ̇2) 7→ σ̇2 7→ σ2(A, 0, A
′, 0),

x6 7→ (class of σ̇6) 7→ σ̇6 7→ σ6(A, 0, A
′, 0),

x3 7→ (class of σ̇3) 7→ σ̇3 7→
∂σ̃3
∂B

∣
∣
∣
B=B′=0

B +
∂σ̃3
∂B′

∣
∣
∣
B=B′=0

B′ = σ̃lin
3 (A, A′, B, B′),

x5 7→ (class of σ̇5) 7→ σ̇5 7→
∂σ̃5
∂B

∣
∣
∣
B=B′=0

B +
∂σ̃5
∂B′

∣
∣
∣
B=B′=0

B′ = σ̃lin
5 (A, A′, B, B′),

where σ̃lin
i are as in (7.8) and the equalities follow since σi(A, B, A

′, B′) are invari-
ant under the exchange B ↔ A′. Let 1 be the element of C[x2, x6, x3, x5]{8, 2}
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corresponding to 1 ∈ C[x2, x6, x3, x5]. There is a commutative diagram

C[x2, x6, x3, x5]
(a) //

(b)

��

C[A, A′, B, B′]

(c)

��
C[x2, x6, x3, x5]{8, 2}

(d) // AA′BB′ · C[A, A′, B, B′]

(8.12)

where (a), (d) are the composite maps (8.11), (8.10), (b) is the action map on 1

and (c) is the action map on the image of 1 by (d).
We have

im(1 ∈ C[x2, x6, x3, x5]{8, 2}
(d)
−−→ AA′BB′C[A, A′, B, B′])

= im(τ̇35 ∈ gr0Σ(M)→ AA′BB′C[A, A′] →֒ AA′BB′C[A, A′, B, B′]).

One computes

im(τ̇35 ∈ gr0Σ(M)→ AA′BB′C[A, A′]) = 30AA′BB′(A2−A′2)(2A+A′)(A+2A′),

therefore

im(1 ∈ C[x2, x6, x3, x5]{8, 2}
(d)
−−→ AA′BB′C[A, A′, B, B′])

= 30AA′BB′(A2 −A′2)(2A+A′)(A+ 2A′).

Since this element of AA′BB′C[A, A′, B, B′] is nonzero and since C[A, A′, B, B′]
is a domain,

the map (c) is injective. (8.13)

We also record:

the map (b) is an isomorphism of bigraded vector spaces (of bidegree (8, 2)).
(8.14)

One computes

σ̃2(A, 0, A
′, 0) = 2(A2+A′2+(A+A′)2), σ̃6(A, 0, A

′, 0) = 2(A6+A′6+(A+A′)6),

σ̃lin
3 (A, A′, B, B′) = 3((A+A′)2 −A2)B + 3((A+A′)2 −A′2)B′,

σ̃lin
5 (A, A′, B, B′) = 5((A+A′)4 −A4)B + 5((A+A′)4 −A′4)B′.

The Jacobian matrix of the map

(A, A′, B, B′) 7→ (σ̃2(A, 0, A
′, 0), σ̃6(A, 0, A

′, 0), σ̃lin
3 (A, A′, B, B′),

σ̃lin
5 (A, A′, B, B′))

is then






∂(σ̃2(A, 0, A
′, 0), σ̃6(A, 0, A

′, 0))

∂(A, A′)
0

∗
∂(σ̃lin

3 (A, A′, B, B′), σ̃lin
5 (A, A′, B, B′))

∂(B, B′)






.

One computes the determinants of the diagonal submatrices:
∣
∣
∣
∣

∂(σ̃2(A, 0, A
′, 0), σ̃6(A, 0, A

′, 0))

∂(A, A′)

∣
∣
∣
∣
= 48AA′(A+A′)(A−A′)(2A+A′)(A+2A′),
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∣
∣
∣
∣

∂(σ̃lin
3 (A, A′, B, B′), σ̃lin

5 (A, A′, B, B′))

∂(B, B′)

∣
∣
∣
∣

= −15aa′(A+A′)(A−A′)(2A+A′)(A+ 2A′),

which implies that the Jacobian determinant of the above map is nonzero. This
implies that the family

(σ̃2(A, 0, A
′, 0), σ̃6(A, 0, A

′, 0), σ̃lin
3 (A, B, A′, B′), σ̃lin

5 (A, B, A′, B′))

of elements of C[A, A′, B, B′] is algebraically independent.
It follows that the map (a) is injective. Combining this with the isomorphism

result (8.14) and the injectivity result (8.13), we obtain the injectivity of map (d)
in (8.12).

The arrow (d) factors through the morphism C[x2, x6, x3, x5]{8, 2}
ϕ
→Mmin(Σ)

(see (8.10)), therefore ϕ is injective.
Combining this result with the surjectivity of ϕ proved in Section 8.2, we obtain:

Proposition 8.1. There is a unique isomorphism of bigraded vector spaces

ϕ : C[x2, x6, x3, x5]{8, 2} →Mmin(Σ)

such that ϕ(1) = τ̇35 ∈ Mmin
0 (Σ), which intertwines the actions of x2, x6, x3, x5

with the actions of σ̇2, σ̇6, σ̇3, σ̇5.
The bidegree (weight degree, Σ-degree) is defined on the left side as follows :

x2, x6, x3, x5 have (weight degree, Σ-degree) respectively (2, 0), (6, 0), (3, 1), (5, 1)
and {8, 2} means shifting the bidegree by (8, 2).

8.3. The S(Σ)-module structure on Mmin(Σ). Lemma 5.2 describes the action
of Σ ⊂ L0 on M ≃ L1. According to Section 5.4.3, there is a sequence of linear
maps Σ → I →֒ A, inducing an algebra morphism S(Σ) → A, and such that the
S(Σ)-module structure on M is the pullback of its A-module structure.

The linear map Σ→ I induces a linear map Σ→ I/I2 = gr1Σ(A) and therefore an
algebra morphism S(Σ)→ grΣ(A). The S(Σ)-module structure on grΣ(M) is then
the pullback of its grΣ(A)-module structure. The grΣ(A)-module structure on the

subspace Mmin(Σ) ⊂ grΣ(M) is the pullback of a grΣ(A)-module structure. The
S(Σ)-module structure on this space is therefore a pullback of this module structure

under the algebra morphism S(Σ) → grΣ(A). The latter morphism is induced by

the linear map Σ → gr1Σ(A) = I/(I2 + I ∩ J), where J is the principal ideal of A
generated by σ̃4 −

1
4 (σ̃2)

2.

Recall that σ(t) =
∑

odd k>3 σkt
k ∈ Σ[[t]] is a generating series for a basis of Σ.

The map Σ→ I is given by σ(t) 7→
∑

odd k>3 σ̃kt
k. One computes

∑

odd k>3

σ̃kt
k =

∑

odd k>3

( 3∑

α,β=1

Xk
αβ

)

tk
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(here, (Xαβ)16α,β63 are such that (X11, X12, X21, X22) := (A, B, A′, B′)

and
∑3

β′=1Xαβ′ =
∑3

α′=1Xα′β = 0 for 1 6 α, β 6 3)

=

3∑

α,β=1

1

2

(
tXαβ

1 + tXαβ
+

tXαβ

1− tXαβ

)

=
1

2
t
d

dt
log

∏3
α,β=1(1 + tXαβ)

∏3
α,β=1(1 − tXαβ)

=
1

2
t
d

dt
log

D(t)

D(−t)
, (8.15)

where D(t) :=
∏3

α,β=1(1 + tXαβ).

Since logD(t) = tσ̃1 −
t2

2 σ̃2 +
t3

3 σ̃3 + · · · and D(t) has degree 9, we have D(t) =

exp(tσ̃1−
t2

2 σ̃2+ · · ·−
t9

9 σ̃9)69, where the index 6 9 denotes the projection ti 7→ ti if

1 6 i 6 9, ti 7→ 0 if i > 9. Expressing σ̃7, σ̃8 and σ̃9 as polynomials in the generators
σ̃2, σ̃3, . . . , σ̃6 of A using Maple, one obtains an expression of D(t) terms of the
generators of A.

Set Dev(t) :=
1
2 (D(t) +D(−t)), Dodd(t) :=

1
2 (D(t)−D(−t)). Let J be the ideal

of A generated by σ̃4 −
1
4 (σ̃2)

2. Set

D0
ev(t) :=

(

1−
σ̃2
4
t2
)2

+
(

−
1

6
σ̃6+

1

96
(σ̃2)

3
)

t6, D0
odd(t) :=

1

3
σ̃3t

3+
(1

5
σ̃5−

1

6
σ̃2σ̃3

)

t5,

Then D0
odd(t) ∈ I[t] and one checks that

Dev(t) ≡ D
0
ev(t) mod (J+ I2)[t], Dodd(t) ≡ D

0
odd(t) mod (IJ + I2)[t].

The first statement, together with the invertibility of D0
ev(t) in A[[t]], implies that

Dev(t)
D0

ev(t)
∈ 1 + (J + I2)[[t]]. The second statement, together with D0

odd(t) ∈ I[t], then

implies that

Dodd(t)

Dev(t)
≡
D0

odd(t)

D0
ev(t)

mod (IJ + I2)[[t]].

This implies

D(t)

D(−t)
=
Dev(t) +Dodd(t)

Dev(t)−Dodd(t)
≡ 1 + 2

D0
odd(t)

D0
ev(t)

mod (IJ + I2)[[t]].

By (8.15),
∑

odd k>3 σ̃kt
k = 1

2 t
d
dt log

D(t)
D(−t) , therefore

∑

odd k>3

σ̃kt
k ≡ t

d

dt

(
D0

odd(t)

D0
ev(t)

)

mod (IJ + I2)[[t]].

The map Σ→ I/(I2 + I ∩ J) = gr1Σ(A) is then given by

∑

odd k>3

σkt
k 7→

(

class of t
d

dt

(
D0

odd(t)

D0
ev(t)

))

=

(

class of σ̃3 · t
d

dt

( 1
3 t

3 − 1
6 σ̃2t

5

D0
ev(t)

)

+ σ̃5 · t
d

dt

( 1
5 t

5

D0
ev(t)

))

.
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Composing this map with the isomorphism gr1Σ(A) ≃ gr0Σ(A) ⊗ (Cx3 ⊕ Cx5), we
obtain the map

Σ→ gr0Σ(A)⊗(Cx3⊕Cx5),

∑

odd k>3

σkt
k 7→

(

class of t
d

dt

( 1
3 t

3− 1
6 σ̃2t

5

D0
ev(t)

))

⊗x3+

(

class of t
d

dt

( 1
5 t

5

D0
ev(t)

))

⊗x5

Composing the latter map with the isomorphism induced by gr0Σ(A) ≃ C[x2, x6],
and using (class of D0

ev(t)) = d(x2, x6, t) (see (7.27)), we obtain the map

Σ→ C[x2, x6]⊗ (Cx3 ⊕ Cx5),

σ(t) 7→ t
d

dt

( 1
3 t

3 − 1
6x2t

5

d(x2, x6, t)

)

⊗ x3 + t
d

dt

( 1
5 t

5

d(x2, x6, t)

)

⊗ x5.

We derive from there:

Proposition 8.2. The inverse of the isomorphism ϕ : C[x2, x6, x3, x5]{8, 2} →
Mmin(Σ) transforms the action of σ(t) ∈ Σ[[t]] on Mmin(Σ) to multiplication by

ξ3(x2, x6, t) · x3 + ξ5(x2, x6, t) ·

(

x5 −
5

6
x2x3

)

on C[x2, x6, x3, x5]{8, 2}, where ξ3(x2, x6, t), ξ5(x2, x6, t) are given by (7.28).

8.4. The depth filtration on Mmin(Σ). It follows from Section 2.4 that the depth

filtration on M is given by M = F 2
dpth(M) ⊃ F 3

dpth(M) ⊃ · · · , where F k+2
dpth(M) =

ABA′B′ · {(B, B′)k ∩C[A, B, A′, B′]as} and (B, B′)⊂C[A, B, A′, B′] is the ideal
generated by B, B′. This filtration induces filtrations on the subspaces F k

Σ(M) :=

Sk(Σ) ·M , on the quotients grkΣ(M) = F k
Σ(M)/F k+1

Σ (M), and on the subspaces
Mmin

k (Σ) ⊂ grkΣ(M).
Since Σ is contained in the intersection (B, B′) ∩ C[A, B, A′, B′]sym, we have

an inclusion F k
Σ(M) ⊂ F k+2

dpth(M) for each k > 0. The collection of these inclusions
gives rise to a linear map

grkΣ(M)→ grk+2
dpth(M) (8.16)

for any k > 0.
The depth filtration on F k

Σ(M) is induced by the depth filtration on M . The

inclusion F k+2
dpth(M) ⊃ F k

Σ(M) implies that F k
Σ(M) coincides with its part of depth

degree > k + 2, so F k
Σ(M) = F k+2

dpth(F
k
Σ(M)). It follows that the same is true of

grkΣ(M), so

grkΣ(M) = F k+2
dpth(gr

k
Σ(M)). (8.17)
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The part of grkΣ(M) of depth degree > k + 3 is defined as the image of the compo-

sition F k+3
dpth(F

k
Σ(M)) →֒ F k

Σ(M)→ grkΣ(M). The commutative diagram

F k+3
dpth(gr

k
Σ(M))

� � // grkΣ(M) // grk+2
dpth(M)

F k+3
dpth(F

k
Σ(M))

OOOO

� � // F k+3
dpth(M)

0

OO

implies that the composition F k+3
dpth(gr

k
Σ(M)) →֒ grkΣ(M) → grk+2

dpth(M) is zero, so
that

F k+3
dpth(gr

k
Σ(M)) is contained in the kernel of grkΣ(M)→ grk+2

dpth(M). (8.18)

The direct sum over k > 0 of the linear maps (8.16) is a linear map

grΣ(M) ≃
⊕

k>0

grkΣ(M)→
⊕

k>0

grk+2
depth(M).

Composing this map with the inclusion Mmin(Σ) →֒ grΣ(M), with the isomorphism

Mmin(Σ) ≃ C[x2, x6, x3, x5]{8, 2}, with the isomorphism
⊕

k>0 gr
k+2
depth(M) ≃ M

arising from the fact that the depth filtration onM comes from a grading, and with
the inclusion M →֒ ABA′B′ · C[A, B, A′, B′], we obtain a linear map

C[x2, x6, x3, x5]{8, 2} → ABA′B′ · C[A, B, A′, B′].

One can check that this map coincides with map (8.11), which has been shown
(proof of Proposition 8.1) to be injective. It follows that for any k > 0, the map

Mmin
k (Σ) →֒ grkΣ(M) → grk+2

depth(M) is injective. Comparing this with (8.18), we

derive that the intersection Mmin
k (Σ) ∩ F k+3

dpth(gr
k
Σ(M)) is zero. On the other hand,

(8.17) implies that Mmin
k (Σ) is contained in F k+2

dpth(gr
k
Σ(M)). All this implies:

Proposition 8.3. For each k > 0, Mmin
k (Σ) is pure for the depth filtration, of

depth k + 2.

8.5. Summary of the results on lower bounds for Σ-structures.

8.5.1. Recall that grt1 is equipped with a weight grading and a compatible depth
filtration (see Section 2.4). The spaces derived from grt1 are likewise equipped with
compatible degrees and filtrations.

8.5.2. There is an isomorphism of graded spaces gr0lcs(grt1) ≃
⊕

odd k>3 Cσk(= Σ),

and Σ is pure of depth degree 1. The Lie bracket of grt1 gives rise to a S(Σ)-module
structure over gr1lcs(grt1) and to a linear map Λ2(Σ)→ gr1lcs(grt1)/Σ · gr

1
lcs(grt1).

8.5.3. Set griΣ(gr
1
lcs(grt1)) := Si(Σ) · gr1lcs(grt1)/S

i+1(Σ) · gr1lcs(grt1), then

grΣ(gr
1
lcs(grt1)) :=

⊕

i>0

griΣ(gr
1
lcs(grt1))

is a Σ-module in the sense of the Introduction. In addition to its grading corre-
sponding to this decomposition (the Σ-grading), this module is equipped with a
weight grading and a depth filtration, which are all compatible.



ON A LOWER CENTRAL SERIES FILTRATION OF grt1 247

8.5.4. The variables x2, x3, x5, x6 are free commuting variables of (weight degree,
Σ-degree) equal to (2, 0), (3, 1), (5, 1), (6, 0), respectively. Polynomials and formal
series are given by

d(x2, x6, t) :=
(

1−
x2

4
t2
)2

+
(

−
1

6
x6 +

1

96
(x2)

3
)

t6,

ξ3(x2, x6, t) := t
d

dt

(
− 1

3 t
3

d(x2, x6, t)

)

, ξ5(x2, x6, t) := t
d

dt

(
− 1

5 t
5

d(x2, x6, t)

)

.

The (weight degree, Σ-degree)-bigraded vector space Mmin(Σ) is equal to the space
C[x2, x3, x5, x6]{8, 2}, where {8, 2} denotes the shift of bidegrees by (8, 2); so
Mmin

0 (Σ) = C[x2, x6]{8}, M
min
1 (Σ) = C[x2, x6]{8} ⊗ (Cx3 ⊕ Cx5), etc. A S(Σ)-

module structure is defined on Mmin(Σ) by the condition that σ(t) =
∑

odd k>3 σkt
k

acts by multiplication by

ξ3(x2, x6, t) · x3 + ξ5(x2, x6, t) · (x5 −
5

6
x2x3).

A linear map Λ2(Σ)→Mmin
0 (Σ) is defined by

{σ(t), σ(u)} = −2(ξ3(x2, x6, t)ξ5(x2, x6, u)− ξ3(x2, x6, u)ξ5(x2, x6, t)).

Equipped with these structures, Mmin(Σ) is a Σ-module. Its depth filtration is such
that

F i
dpth(M

min(Σ)) = (part of Mmin(Σ) of Σ-degree > i) = Mmin
i−2(Σ)⊕M

min
i−1(Σ)⊕· · · .

Theorem 8.4. The depth-filtered Σ-module Mmin(Σ) is a subquotient of the depth-
filtered Σ-module grΣ(gr

1
lcs(grt1)).

9. Lower Bounds for Hilbert–Poincaré Series of
Subquotients of grt1

As remarked in Section 4.4, Theorem 8.4 implies lower bound results for Hilbert–
Poincaré series. For X a vector space with weight grading X =

⊕

n∈N
X [n] and

compatible depth filtration, we have

PX(t, u) =
∑

n,i>0

dim gridpthX [n]tnui, PX(t) =
∑

n>0

dim X [n]tn(= PX(t, 1)).

(9.1)
Then

PMmin(Σ)(t, u) =
t8u2

(1− t2)(1− t6)(1 − ut3)(1− ut5)
,

PMmin(Σ)(t) =
t8

(1 − t2)(1− t6)(1− t3)(1 − t5)
.

On the other hand, the 2-variable series of gr1lcs(grt1) and of grΣ(gr
1
lcs(grt1)) coin-

cide, as well as the 1-variable series of the same spaces. Theorem 8.4 then implies:
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Theorem 9.1. The following inequalities hold

Pgr1
lcs

(grt1)
(t, u) >

t8u2

(1− t2)(1− t6)(1 − ut3)(1− ut5)
,

Pgr1
lcs

(grt1)
(t) >

t8

(1 − t2)(1− t6)(1− t3)(1 − t5)
,

where an inequality means that the difference of both sides is a series with nonneg-
ative coefficients, and the left-hand sides are defined by (9.1).

10. On the Explicit Form of grdpth(grt1) in Depths 2 and 3

The depth filtration of L (Section 2.4) induces a decreasing filtration on grt1,
also called the depth filtration. The associated graded Lie algebra grdpth(grt1) is
a (weight, depth)-bigraded Lie algebra. The Broadhurst–Kreimer conjecture [BK]
predicts the dimensions of the components of this bigraded vector space. It has
been proved for depths 1, 2, 3 [G]. We recall this material in Section 10.1.

The explicit form of grkdpth(grt1) is known for depths k = 1, 2 [Ec]. Using the

known results on Mmin(Σ), we recover this explicit form (Section 10.2) and prove
some results on the explicit form of grkdpth(grt1) when k = 3 (Section 10.3).

10.1. In Section 2.1, we introduced the free Lie algebra L̃ = L(Cx⊕Cy), equipped
with the bracket 〈 , 〉. As remarked in Section 2.4, this bracket (as well as the free
Lie algebra bracket [ , ]) is homogeneous for the depth degree (i.e., the degree in y),

therefore L :=
⊕

i>0(part of L̃ of y-degree i) is a graded Lie subalgebra of L̃ for
the brackets 〈 , 〉 and [ , ].

For a > 0, set ξ[a] := (adx)a(y) (∈ L), and

V :=
⊕

a>0

Cξ[a] (⊂ L).

Then V ≃ L[1] (where for k > 1, L[k] denotes the part of L of y-degree k), and
it follows from Lazard’s elimination theorem that the Lie bracket [ , ] induces an
isomorphism

L(V ) ≃ L

of depth-graded Lie algebras between (L, [ , ]) and the free Lie algebra generated by
V , where the degree on L(V ) is defined by the condition that V has depth degree 1.

The depth filtration on L is defined by F i
dpth(L) :=

⊕

j|j>i L[j]; since this fil-

tration is induced by a grading, L coincides with its associated graded Lie algebra
for this filtration. This filtration is also compatible with the Lie algebra inclusion
L ⊂ L̃.

The Lie algebra inclusion grt1 ⊂ L and the depth filtration on L induce a filtra-
tion on grt1, which is again called the depth filtration. The associated graded Lie
algebra is grdpth(grt1) =

⊕

k>1 gr
k
dpth(grt1), where

grkdpth(grt1) :=
grt1 ∩ F

k
dpth(L)

grt1 ∩ F
k+1
dpth(L)

→֒ L[k] ≃ Lk(V ).
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The map grkdpth(grt1) →֒ Lk(V ) is an inclusion of graded (for the x-degree) vector
spaces, and as mentioned above, the Broadhurst-Kreimer conjecture predicts the
graded dimension of these spaces for each k > 1. They have been established for
k = 1, 2, 3. More precisely, the following results have been shown [G]. Set

W :=
⊕

even a>0

Cξ[a] ⊂ V.

Let Lie(W ) ⊂ L(V ) be the Lie subalgebra (for the bracket 〈 , 〉) generated by W ,
and let Lie(W )[k] ⊂ Lk(V ) be its part of depth degree k. Then:

(1) for k = 1, 2, 3, Lie(W )[k] = grkdpth(grt1),

(2) the Hilbert–Poincaré series of grkdpth(grt1) is equal to t3

1−t2 for k = 1, to
t8

(1−t2)(1−t6) for k = 2, and to t11(1+t2−t4)
(1−t2)(1−t4)(1−t6) for k = 3.

10.2. Computation of gr2dpth(grt1). There is a commutative diagram

gr1dpth(L0)
⊗2

��

L⊗2
0

88 88qqqqqq

��

gr1dpth(L)
⊗2

��

ff▼▼▼▼▼

Σ⊗2
+
�

88qqqqqqq

����✄✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

gr2dpth(L1) gr1dpth(grt1)
⊗2

ff▼▼▼▼▼▼

��

L1

L0·L1

88qqqqqq
gr2dpth(L

1)

ff▼▼▼▼▼

grt⊗2
1

ffff▼▼▼▼▼▼

��

M0
� � // L1

Σ·L1

88 88rrrrrrr
gr2dpth(grt1)

ff▲▲▲▲▲▲

F 2
dpth(grt1)

ffff▼▼▼▼▼▼

where the first square arises from the inclusion Σ ⊂ L0, the second square from the
compatiblity of the operations of L with depth, the fifth square from compatiblity of
the Lie bracket of grt1 with depth, the fourth square from the Lie algebra inclusion
grt1 ⊂ L, and the third square from taking associated graded for the l.c.s. filtration.

The isomorphism L0 ≃ ABC[A, B] is given by (class of (adx)k(ad y)l([x, y]))↔
Ak+1Bl+1. It gives rise to an isomorphism grdpth(L0) ≃ AC[A]B. This space
is isomorphic to the subspace V+ :=

⊕

a>0 Cξ[a] of V , where the bijections are

(class of (adx)k+1(y))↔ Ak+1B ↔ ξ[k + 1] for k > 0. Therefore, we have

grdpth(L0) ≃ AC[A]B ≃ V+. (10.1)

The isomorphisms L1 ≃ L2(L0) ≃ L2(ABC[A, B]) give rise to an isomorphism

gr2dpth(L1) ≃ L2(AC[A]B) ≃ ABA′B′C[A, A′]as ≃ L2(V+), (10.2)
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where the exponent as means antisymmetry in A, A′, and where the bijections are

(class of [(adx)k+1(y), (adx)l+1(y)])↔ [Al+1B, Al+1B]

↔ ABA′B′(Ak(A′)l −Al(A′)k)↔ [ξ[k + 1], ξ[l + 1]]

for k, l > 0. One checks that the natural maps Σ → gr1dpth(L0) and Mmin
0 (Σ) →

gr1dpth(L1) are injective. Moreover, there is a decomposition L2(V ) = [ξ[0], V+] ⊕

L2(V+). As F
2
dpth(grt1) is contained in L1, its projection on [ξ[0], V+] is zero, which

implies that gr2dpth(grt1) is contained in L2(V+) ≃ gr2dpth(L1). The above diagram
then gives rise to a diagram

Σ⊗2

≃

((
� � //

{ , }
����

gr1dpth(L0)
⊗2

��

gr1dpth(grt1)
⊗2? _oo

bracket

��
Mmin

0 (Σ) �
� // gr2dpth(L1) gr2dpth(grt1)

? _oo

where the surjectivity of Σ⊗2 →Mmin
0 (Σ) follows from the construction of Mmin(Σ)

and the surjectivity of gr1dpth(grt1)
⊗2 → gr2dpth(grt1) follows from the results recalled

in Section 10.1. This diagram implies the equality

Mmin
0 (Σ) = gr2dpth(grt1). (10.3)

It follows that the subspace gr2dpth(grt1) of L2(V+) coincides, under the identifica-

tion L2(V+) ≃ ABA
′B′C[A, A′]as induced by

[ξ[k + 1], ξ[l + 1]]↔ ABA′B′(AkA′l −AlA′k),

with the subspace

ABA′B′(A−A′)(A+A′)(A+2A′)(2A+A′)C[A2+A′2+(A+A′)2, A6+A′6+(A+A′)6]

(see [Ec]; the kernel of the bracket gr1dpth(grt1)
⊗2 → gr2dpth(grt1) was studied first

in [Sc]).

10.3. Computation of gr3dpth(grt1)

10.3.1. The isomorphism L1 ≃ L(ABC[A, B]) gives rise to an isomorphism between
gr3dpth(L1) and the part of L(ABC[A, B]) of degree 3 in B. Therefore,

gr3dpth(L1) ≃ [ABC[A], AB2C[A]] ≃ ABA′(B′)2C[A, A′] ≃ [V+, [ξ[0], V+]],
(10.4)

where the third space is viewed as a subspace of L2(
⊕

i>0(ad ξ[0])
i(V+)); the bijec-

tions are given by

(class of [(adx)k+1(y), (ad y)(adx)l+1(y)])↔ [Ak+1B, Al+1B2]

↔ Ak+1B(A′)l+1(B′)2 ↔ [ξ[k + 1], [ξ[0], ξ[l + 1]]] for k, l > 0.
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The adjoint action of L0 on L1 is compatible with depth, therefore it gives rise
to a linear map gr1dpth(L0) ⊗ gr2dpth(L1) → gr3dpth(L1). By transport of structure

via the isomorphisms (10.1), (10.2) and (10.4), we obtain a map

µ : AC[A]B ⊗ABA′B′C[A, A′]as → ABA′(B′)2C[A, A′].

Lemma 3.1 then implies that this map is given by

f(A)B ⊗ABA′B′ · g(A, A′) 7→ ABA′(B′)2(f(A′)− f(A+A′))g(A, A′).

10.3.2. For any integer k > 0, there is a natural sequence of linear maps

Mmin
k (Σ) →֒

Sk(Σ) · L1

Sk+1(Σ) · L1
→

Sk(L0) · L1

Sk+1(L0) · L1
→ grk+2

dpth(L1),

where the last map is induced by the inclusions Sk(L0) ·L1 ⊂ F
k+2
dpth(L1), S

k+1(L0) ·

L1 ⊂ F
k+3
dpth(L1). The direct sum over k > 0 of this sequence of maps is a sequence

of graded module morphisms over the sequence of morphisms of symmetric algebras
(graded by the symmetric algebra degree) S(Σ) ≃ S(Σ)→ S(L0)→ S(gr1dpth(L0)).
One derives from there a commutative diagram

Σ⊗Mmin
0 (Σ) //

act

��

gr1dpth(L0)⊗ gr2dpth(L1)

��
Mmin

1 (Σ)
bot // gr3dpth(L1)

(10.5)

It follows from the computation of the S(Σ)-module Mmin(Σ) in Proposition 8.2
that the map act is surjective.

Let Σ0 := Cσ3 ⊕ Cσ5 ⊂ Σ. Proposition 8.2 also implies that the restriction of
act to a map Σ0⊗Mmin

0 (Σ)→Mmin
1 (Σ) is a linear isomorphism. We therefore have

a diagram

Σ0 ⊗Mmin
0 (Σ)

≃

��

� � // gr1dpth(L0)⊗ gr2dpth(L1)

��

≃ // AC[A]B ⊗ABA′B′C[A, A′]as

µ

��
Mmin

1 (Σ)
bot // gr3dpth(L1)

≃ // ABA′(B′)2C[A, A′]

(10.6)
Composing the resulting map Σ0 ⊗Mmin

0 (Σ) → ABA′(B′)2C[A, A′] with the iso-
morphism between Σ0 ⊗Mmin

0 (Σ) and a subspace of Σ0 ⊗ ABA
′B′C[A, A′]as (see

end of Section 10.2), we obtain the map

Σ0 ⊗
(
ABA′B′(A−A′)(A+A′)(2A+A′)(A+ 2A′)

× C[A2 + (A′)2 + (A+A′)2, A6 + (A′)6 + (A+A′)6]
)

→ ABA′(B′)2C[A, A′], (10.7)σ3 ⊗ABA
′B′g(A, A′) 7→ 3ABA′(B′)2((A′)2 − (A+A′)2)g(A, A′),

σ5 ⊗ABA
′B′g(A, A′) 7→ 5ABA′(B′)2((A′)4 − (A+A′)4)g(A, A′)

As the ratio ((A′)4 − (A + A′)4)/((A′)2 − (A + A′)2) = (A′)2 + (A + A′)2 is not
invariant under the permutation A ↔ A′, the map (10.7) is injective. It follows
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that the map bot from diagram (10.5) is injective. Diagram (10.6) also implies that
the image of bot coincides with the images of (10.7).

10.3.3. There is a commutative diagram

F 1
dpth(grt1)⊗ F

2
dpth(grt1)

� � //

��

L⊗ L1

��

// L0 ⊗ L1

��
F 3
dpth(grt1)

� � // L1 // L1

where the first square is induced by the Lie algebra inclusion grt1 ⊂ L, and the
second square is induced by taking associated graded for the l.c.s. filtration. The
resulting diagram is compatible with the depth gradings and therefore gives rise to
a diagram

gr1dpth(grt1)⊗ gr2dpth(grt1)
//

��

gr1dpth(L0)⊗ gr2dpth(L1)

��
gr3dpth(grt1)

// gr3dpth(L1)

(10.8)

The space L3(V ) decomposes as follows

L3(V ) = [ξ[0], [ξ[0], V+]]⊕ [V+, [ξ[0], V+]]⊕ L3(V+).

As F 3
dpth(grt1) ⊂ L1, the subspace gr3dpth(grt1) ⊂ L3(V ) is such that

gr3dpth(grt1) ⊂ [V+, [ξ[0], V+]]⊕ L3(V+). (10.9)

Recalling the isomorphism (10.4) of gr3dpth(L1) with the first summand, the bot-

tom map of (10.8) can then be identified with the composition of (10.9) with the
projection on the first summand of [V+, [ξ[0], V+]]⊕ L3(V+).

10.3.4. Combining diagrams (10.8) and (10.5) and using isomorphism (10.3), we
obtain a commutative diagram

Σ⊗Mmin
0 (Σ)

� � //

����

≃

,,
gr1dpth(L0)⊗ gr2dpth(L1)

��

gr1dpth(grt1)⊗ gr2dpth(grt1)
? _oo

〈 , 〉

��
Mmin

1 (Σ)
� � // gr3dpth(L1) gr3dpth(grt1)

oo

which, using isomorphism (10.4), gives rise to the diagram

Σ⊗Mmin
0 (Σ)

����

〈 , 〉◦≃ // gr3dpth(grt1)

��

� � // [V+, [ξ[0], V+]]⊕ L3(V+)

uuuu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

Mmin
1 (Σ)

� � // [V+, [ξ[0], V+]]
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From this diagram, one derives the equality

im(gr3dpth(grt1 → [V+, [ξ[0], V+]])) = im(Mmin
1 (Σ) →֒ [V+, [ξ[0], V+]])

= image of map (10.7).

The commutative square in this diagram induces a linear map from the kernel of
the left vertical map to the kernel of the right vertical map. As the latter kernel
coincides with gr3dpth(grt1) ∩ L3(V+), we obtain a linear map

ker(Σ⊗Mmin
0 (Σ)→Mmin

1 (Σ))→ gr3dpth(grt1) ∩ L3(V+),

such that the following diagram commutes

ker(Σ⊗Mmin
0 (Σ)→Mmin

1 (Σ)) //
� _

��

gr3dpth(grt1) ∩ L3(V+)
� _

��
Σ⊗Mmin

0 (Σ) // gr3dpth(grt1).

(10.10)

In Section 10.2, we constructed a commutative diagram

Λ2(Σ)
∼ //

id⊗{ , }
����

Λ2(gr1dpth(grt1))

id⊗〈 , 〉
����

Mmin
0 (Σ)

∼ // gr2dpth(grt1).

Taking the tensor product of this diagram with the isomorphism Σ
∼
→ gr1dpth(grt1)

and combining it with the Jacobi identity

(Λ3(gr1dpth(grt1))
id⊗〈 , 〉
−−−−→ gr1dpth(grt1)⊗ gr2dpth(grt1)

〈 , 〉
−−→ gr3dpth(grt1)) = 0,

we obtain the diagram

Λ3(Σ)
∼ //

id⊗{,}

��

Λ3(gr1dpth(grt1))

id⊗〈 , 〉

��

0

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

Σ⊗Mmin
0 (Σ)

∼ // gr1dpth(grt1)⊗ gr2dpth(grt1)
〈 , 〉 // gr3dpth(grt1)

which implies the identity

(Λ3(Σ)
id⊗{ , }
−−−−−→ Σ⊗Mmin

0 (Σ)→ gr3dpth(grt1)) = 0.

The Σ-structure property of Mmin(Σ) implies that the sequence of maps

Λ3(Σ)
id⊗{ , }
−−−−−→ Σ⊗Mmin

0 (Σ)→Mmin
1 (Σ) (10.11)
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is a complex, therefore that the image of Λ3(Σ)
id⊗{ , }
−−−−−→ Σ⊗Mmin

0 (Σ) is contained in
ker(Σ⊗Mmin

0 (Σ)→Mmin
1 (Σ)). It follows that one can augment (10.10) as follows

Λ3(Σ)

0

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

��
ker(Σ⊗Mmin

0 (Σ)→Mmin
1 (Σ)) //

� _

��

gr3dpth(grt1) ∩ L3(V+)
� _

��
Σ⊗Mmin

0 (Σ) // gr3dpth(grt1)

Denoting the middle homology of the complex (10.11) by H(Mmin(Σ)), one then
obtains a map

H(Mmin(Σ))→ gr3dpth(grt1) ∩ L3(V+). (10.12)

10.3.5. The following diagram commutes

Σ⊗3 ∼ //

id⊗{ , }

��

gr1dpth(grt1)
⊗3

〈 , 〉◦(id⊗〈 , 〉)
����

Σ⊗Mmin
0 (Σ) // gr3dpth(grt1)

In this diagram, the surjectivity of the left vertical map follows from the construc-
tion of Mmin(Σ), and the surjectivity of the right vertical map follows from Section
10.1. It follows that the map Σ⊗Mmin

0 (Σ)→ gr3dpth(grt1) is surjective, as indicated
in the following commutative diagram

ker(Σ⊗Mmin
0 (Σ)→Mmin

1 (Σ)) //
� _

��

gr3dpth(grt1) ∩ L3(V+)
� _

��
Σ⊗Mmin

0 (Σ) // //

����

gr3dpth(grt1)

��
Mmin

1 (Σ) �
� // [V+, [ξ[0], V+]]

with exact columns. Inspection of this diagram then implies that the top horizontal
map of this diagram is surjective, therefore that the map (10.12) is surjective.

10.3.6. There is an exact sequence

0→ gr3dpth(grt1)∩L3(V+)→ gr3dpth(grt1)→ im(gr3dpth(grt1)→ [V+, [ξ[0], V+]])→ 0.

The last space is isomorphic to the image of the injection (10.7), therefore its Hilbert

series is t11(1+t2)
(1−t2)(1−t6) ; according to Section 10.1, the Hilbert series of gr3dpth(grt1)

is t11(1+t2−t4)
(1−t2)(1−t4)(1−t6) . It follows that the Hilbert series of gr3dpth(grt1) ∩ L3(V+) is

t17

(1−t2)(1−t4)(1−t6) .
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On the other hand, the maps of the complex (10.11) have the following properties:
the last map Σ⊗Mmin

0 (Σ)→Mmin
1 (Σ) is surjective, and it follows from [G, Theorem

1.5] that the first map Λ3(Σ)
id⊗〈 , 〉
−−−−→ Σ ⊗Mmin

0 (Σ) is injective. Then the Hilbert
series of H(Mmin(Σ)) is computed as follows

PH(Mmin(Σ))(t) = PΣ⊗Mmin
0 (Σ)(t)− PΛ3(Σ)(t)− PMmin

1 (Σ)(t)

=
t3

1− t2
·

t8

(1 − t2)(1− t6)
−

t15

(1 − t2)(1− t4)(1− t6)
− (t3 + t5) ·

t8

(1 − t2)(1 − t6)

=
t17

(1 − t2)(1− t4)(1− t6)
,

so PH(Mmin(Σ))(t) = Pgr3
dpth

(grt1)∩L3(V+)(t). Combined with the fact that the map

(10.12) is a graded epimorphism (Section 10.3.5), this equality implies that the map
(10.7) is a graded isomorphism.

10.3.7. The results of Section 10.3 can be summarized as follows.

Theorem 10.1. The space L3(V ) admits the decomposition

L3(V ) = [ξ[0], [ξ[0], V+]]⊕ [V+, [ξ[0], V+]]⊕ L3(V+).

Its subspace gr3dpth(grt1) satisfies

gr3dpth(grt1) ⊂ [V+, [ξ[0], V+]]⊕ L3(V+).

The exact sequence 0→ L3(V+)→ [V+, [ξ[0], V+]]⊕L3(V+)→ [V+, [ξ[0], V+]]→ 0
gives rise to an exact sequence

0→ gr3dpth(grt1)∩L3(V+)→ gr3dpth(grt1)→ im(gr3dpth(grt1)→ [V+, [ξ[0], V+]])→ 0.

The isomorphism [V+, [ξ[0], V+]] ≃ ABA′(B′)2C[A, A′] given by (10.4) gives rise
to an isomorphism

im(gr3dpth(grt1)→ [V+, [ξ[0], V+]]) ≃ im(map (10.7)).

The map (10.12) is an isomorphism

H(Mmin(Σ))
∼
→ gr3dpth(grt1) ∩ L3(V+).

The Hilbert series of these spaces are given by

Pgr3
dpth

(grt1)∩L3(V+)(t) =
t17

(1− t2)(1− t4)(1− t6)
,

Pim(gr3
dpth

(grt1)→[V+,[ξ[0],V+]])(t) =
t8(t3 + t5)

(1− t2)(1− t6)
,

Pgr3
dpth

(grt1)
=

t11(1 + t2 − t4)

(1− t2)(1 − t4)(1 − t6)
.

Remark 10.2. Explicit computation ofH(Mmin(Σ)) and of the map (10.12) would
therefore yield an explicit description of gr3dpth(grt1) ∩ L3(V+).

Acknowledgements. We thank L. Schneps for discussions related to this work,
in particular on the subject of relating the lower bounds found there with the depth
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256 N. ARBESFELD AND B. ENRIQUEZ

References
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