Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Moscow Mathematical Journal

Volume 20, Issue 1, January–March 2020  pp. 185–210.

Nonlocal Elliptic Problems and Applications

Authors:  Veli B. Shakhmurov (1)
Author institution:(1) Department of Mechanical Engineering, Okan University, Akfirat, Tuzla 34959 Istanbul, Turkey


In this paper, the integral boundary value problems for differential-operator equations with principal variable coefficients are studied. Several conditions for the $L^{p}$-separability are given. Moreover, the sharp coercive estimates for resolvents of corresponding differential operators are shown. It is implied that these operators are positive and also are generators of analytic semigroups. Then, the existence and uniqueness of maximal regular solution to nonlinear abstract elliptic equations is derived. In application, maximal regularity properties of the abstract parabolic equation with variable coefficients and systems of elliptic equations are derived in mixed $L^{\mathbf{p}}$-spaces.

2010 Math. Subj. Class. 35xx, 35Kxx, 46Bxx, 47Hxx, 43Axx.

Keywords: Separable boundary value problems, equations with variable coefficients, differential-operator equation, nonlinear abstract differential equations, Abstract Sobolev spaces, well-posedness of parabolic problems

Contents   Full-Text PDF